MENDELISM

By
R. C. PUNNETT

THRD FDHIDN

BAMA WMPMA RESEMROI MMTITUTE, TRLCHIN, zochtil state.

$$
10: 61
$$

BAMA WMPMA RESEMROI MMTITUTE, TRLCHIN, zochtil state.

$$
10: 61
$$

GTFCOH MEWDEL

Frontrinm

MENDELISM

ET
R. C. PUNNETT

TiJRH EDHTNM

MACMJLLAN AND COMLMITED
ST. MARTHPS ETREET, LONDON
1511

PREFACE

A FEw yeers ago I witbligited a short sketch of Mendel's discowery in herebity, and of some of the recent experiments which had arisen from it Since then progress in these studics has beern rapid, and the present account, though bearing the same title, has been completcly rewritten. A number of jillustrations have bern added, and here I may aeknowledge my indebtedness to Miss Wheldate for the two coloured plates of swet peas, to the Hon. Walter Rothechild for the butterflics forured on Plate WI. to Professor Wood for photographs of sheep, and to Dis. Drintwater for the fegures of human hands To miy fomer publishers also, Messer, Eowes and Eowes, If wish to express my thanks for the courtesy with which they arguiesced in myr desire that the presont edition should be published elsewhere.

As the book is interided to appeal to a wide audicnce, I have not atteripted to give mote cxperi= mental instances that werd mecegsary to illugtrato the story, nor hawe I burdened it with bibliograplical reference. The reader whe desires further informatitn may be referned to Mr. Hateson's indispensable
whame on Merders Printifles of Feredity (Cambridge I gog), where a full account of thesse matrets is readily arcessible. Noither have I alluried to recent cytological work ill so far at it thay bear upeth our problems. Many of the facts comnected with the division of the chromosomes are strition and gisegestive, but while go mueh differerioe of opinion exists as to their interpretation they ero hardly guited for popular treatment:

In choosing typical carmples to illustrite the growth of our ideas it was maturat that I should eive the preference to those with, which I was most familiar. For this reason the book is in some moasure a pecord of the work accomplished by the Cambridge School of Genetics, and tit in not unfair to say that under the leaderehip of Wellium Kateson the contributipns of this school heve been second to none But it should not be forgotten that worlecrs in other European countries, and esperally in Americo, have amassed a large aud valuable body of evidence with which it is impossible to deal in at smale wolurec of this scope.

It is not long since the Erglish languate was eniched by two new words-Eugenics and Genetics -and their similarity of ofigin has sometines fed to contiusion hetween them on the part of those who ante finctent of Greel. Genctics if the terion appliod to the experienental ctedy of heredity and watation in animals and plants, and the main concern of its
students is the establishing of law and order ameng the phenomena there encountercd. Eugenits, on the oteer hand, deals with the improveinent of the humetr race under existing conditions of daw and gentiment. The Eugenist has to take into nccount the religious and gocial belicet and. prejulices of matikind, Other issues are involved berides the purely biolegital one, though as time goes on it is coning to be more clearly recognised that the Eugenice ideal is shariply cifcumseribed by the focts of heredity and variation, and by the laws which govern the transmission of qualities in living thingeWhat these facts, what thene laws are, in so far ins we at precent know them, I have endeawored to indicate in the Following [ages; for I foel comvinood that if the Eugenist is to achicere suythiug solid it ig upon them that he must primarily build. Little enough material, it is trwe esists at present, but that We now see to be largely a quetion of time and means. Whatever be the outcorte, whatcuer the form of the structure which is cventually to emerge, we owe it frist of all to Mended that the foumationas can be well atd truly laid.
R. C.

 TRICHUR, COCHH STATE
CONTHNTs

CHAPIER I

1.antr

The FRODLEM
CHAPTER II〕
 7
CHAPTERJI
 『5
CHAPTER [V

CIAPTERV
 39
CHAPTER VI.
 54
CHAPTER V[]
Dostaraser 63

CHAPTER V！r

CHAPTER IN

CHAPTJR X

STM
11

CHAPTFR XI

Sx（manderal

CHAPTER X゙It

1mteruenditg 1Tじ
CHAPTER KII
Warcntas ama Evolutan 135
CIAPTEX XTV
Edonomacal14：

M』』 146
APr゙MD日 171
INDEX 975

ILLUSTRATIONS

Tratil 1:HEF
GT\&

1. Rallatita
II. Swer गrans 58
]11. 5hmep 72
7\%, 乌reet jun 74
ห'. Г"0ul5 47
VF. Lutucrfion J34

Flli.
 19
 17
3u Single ind Doubre fratulas 28
H, Fows Combs 30
2. Dingras pf Talumitance of lowls' Catub 34
b, Fowis' Lombs 35
 lotwen two white Swer Pers 43
 48
 ; 1
xii MENDELISMI
FIIL 「atic：
 5ユ
 ぼ「
 +
 68
 6
If，Fees all Find 7
 72
 몰
 P4
 hota Cock 97
20，3cbeat of Hheritace of Brova Legborn Henx sibey Eonk 08
 cuoged with pute Bratire Leghom 99
 $t \square \square$
 ［白］
コ4．Di引gran illustrating slatire of blifuring fooul 10 复
 Leghorc Hen L．
 「0
 J 5
 Cock 」「5
29，Podigree mi Eurssian Tamity 「き1
 147
ILLUSTRATJONS 號
部 was
3. Cure illustratiog Conception of pure Lines 49
4. Beachuarryous and Normall Hands 157
5. Fediggraph of Bracky incrylous Hawd 55
6. Fedigrec of Brachydactivous Faraily [59
5j. Pedigue of Hanmphilic Fanily 10 c

For although it be a more new and difficult way, to find ont the nature of things, by the things themfelves ; then by reading of Books, to take our knowledge apon truft from the opinions of Philofophers: yet muft it ueeds be conterfed, that the former is much more open, and lefe freudulents, efpecially in the Secrets relating to NaturaI Phidgophy.
 Axatsatical' Extretudituif 1653 .

Herns ${ }^{4} A$

Page Erin line tb, for aygote mad garaie

 TRICHUR, GOCHIN STATE.
CHAPTER [

THF PJOBLEN

A curious thing in che history of luman thaught so fer as literature neveds it to $u 5$, is the strange lack of interest shown in ane of the most interesting of all Euman relatiotships. Tew if any of the mome prinitive peoples semin to have atemped to define the perte played by aither parent in the formetion of the ofteping of to have assigned peculiay powers DE transmiasion to them, cuen in the raguest way. For ages min must have been more or lese conim seiously imporing his domesticated races of animals and plants, yret it is not untill the time of dristotle that we bave chear evidence of any hypothesits to account for these phenomend of heredity. The production of offering by man was then held to be similar to the production of a crop from seed. The secd came from the men, the woman provided the soil. This remained the generally acopgted view for many denturbes and it was not until the recognition of worsan as mote than a pascive agerat that the physical basts of heredity became establishod. That fecognition was effectad by the mictoscope, (ot onlyp with its advest was atemal observation of the minute
scxual cellg made possible After mome than a hundred feare of conflich [asting untill the end of the eightecnth century, scientifice men settled down to the wew that each of the sexe make a tefnite materiza contribution to the offepring produced by their joint efforts. Anong animals the femate contributes the ofum and the male the spomatomon ; among plant the corresponding cells are the ovales and pollen grains.

As a generel rule frent be stated that the reprowntive cells grodered by the female are relationg large non without the power of independent nower ment In addition to the actual liwing substance which is to tahe pare in the formation of a new indiwidus, the ous are more or less heawher loaded with the golk subitarace that is to provide for the nutrition of the developing embryo during thie cary stages of its existence. The size of the owa raties erocmolaily in diferent animals. In birdg anod reptiles, where the contents of the egeg form the solt resoures of the developing young they are very large in comparison with the silx of the athimal which lays themr In mammals, on the other hand, where the young ate parasitic upon the mother durimg the earlicr stages of their growth, the egga are minute and only contain the small amaujut of yolk that enables them to reach the stage at which they derelop the processes for ettaching thementwen to the wall of the maternal uterus. But whaterer the diflerencos in the size and appenance of the ova produest by difterent animals, they are all comparable in that sach in a distinct and separate sexual ceft which, as a role is urable to develop
into a new indtwidual of its specieg unless it is fertilised by untor with of sexual eell profuced by the male.

The male sexual celle are always of microscopic sise and are produced in the generative gland or testian in excedingiy large turabert. Ith addetion to their mindter size bhey difier from the ova in their fower of active movernent Animals present warbus mechanisms by which the sexual clements may be brought into juxtaposition, but ink all caseas some distarte raust be traversed in a fluid or semjo theid medium (frequently withit the bour of the female parent) before the neceseaty fusion and occut To aceomplish this latter end of ite potaney the spermatowion is endowed with some farm of motile agparatus, and this frequently taker the form of a long flagellum, of whip-lijer process, by the lashing of which the litule creature propels itseff much as a tadpole with its tail.

In planta as in anmals the tomale aclls or ovules are Jarger than the pollangrains, though the disparicy in siae is not neady so mavked. Seill they are a) ways relationly minute cells sive the circumstames of their sevelopment as parasites upon the mother plant render it unncessary tor them to possess any great supply of food yolk. The ovules are Eound shirounded by meternal tessue is the owary, but through the stigma and down the pistil a potentiad passage is left for the male cell. The majority of flowers are hermaphroditep and in many eases they are also selfrertilising The anthers burst and the contained pollen grains are then shed upon the stigma, When the happens, the pollen ofll slips

1lhrough a littie hole in its cont and bores its way down the pistil to reach an ovule in the ovary. Complete fusion accurs and the minute embryo of in rew plant jumediately results. But for some time it is incapable of leading a scparate existence, and, like the embryo manmal, it lives as a parasite upon its parent By the parent it is prorided with a protective wrapping, the seed coat, and bereath this the little embryo swells untill it reaches a certain size, when as a ripe seed it severs itg confoction with the maternal organism. It is important to realjec thet the sed of a plant is not a sexual cell but a young individual which except for the woat that it weare belongs entircly to the racht gencration. It ds
 butierties. During one enomer they are initiated by the union of two sencual cells and pass through certain stages of laumal development-the buttertly as a caterpillar, the plant as a parasite upon itg mother. As the summer drews io a alose ench pases into a resting stage against the winter coldthe butterfy as a pupa and the plamt as a seed, with the diflerence that while the saterpillar provides its owa coat, that of the plant is provided by its mother. Wista the advent of apring both butterty and plant emenge, boome mature, aud themselves ripen germ Bella whith orve rise to a new generation-

Whatever the details of developmest one cardinal fact is clear. Except for the melatively rare inctances of parthenogenesis a new individurl, whether plant of animal, arises ats the joint product of two sexual cells derived from hadividuals of diterent semes Such sexual cells, whether orules of ova, sperma-
tozou or pallen grains, hre known by the general Berm of gatites, or meryitg cells, and the ingutdual formed by the fusion or yroking together ol two gametes is spoken of as a zygoter. Since a apote arises from the yokjag togethes of two separate Eatuetes, the individial so rormed must be vegarded throughout its life as a double structure irt which the eomponents brought in by cach of the gametes pemain intimately fused in a formiof partnerchip. But whes the sygote in its than bomes to form gametes, the paritrership is broken and the propegs La beversed. The component parts of the dual stricture afe resolved with the formation of a set वf gingle tatutureg; the fametes.

The life cyele of a species from amotig the birgher plants andmals my be icgarded as falling into the fee periods: (1) a period of isolition in the form of gametes, exch a living tuit incajuble of turther development without intimate association with another protued by the opposite sex; (2) at periad of association in ribich two gametes boome yoked together into a zygote, and react upon one amother to gite rise by a process of cell divisipn to what we ordinarily term an indinidual with all ith various. atoributes and moperties; and (3) atiod of dissonation when the single structured gametes sopatate out from that portion of the double stuctured zygote which conctitutes its gencrative gland What is the relation between gamete and zyoute, bebwem zrgote and gamete? how are the propertics of the zygote repecencted in the gamete, and in what monner are they distibuted from the othe to the other?-these are questionts which serve to indicate
the rature of the problen endertying the process of haredity,

Owing to their peculiar power of growth and the relatively large sixe to which they attain, many of the propertice of rygotes ate appreciable by observation. The colour of an animal or 0 ef a flower, the shape of a seed, or the pattern on the wings of a moth, are all zypotic properties, and all capable of direct matimation If is otherwise with the propertios ofl zameter While the difterence betwecn a blate atd a white Fow] [s anfaciently obvious no one by inspection can tell the differente betwen the egg that will hatch into a black and that which wrill hateh
 driyone to-day pick otit those that will produce white from those that witl protuce coloured fowers, Wevertheless, we know that in spite of apparent similarity there must exist fundamentel diferences among the gameter cymen among those that spring from the same individual. At pregent odr only may of appleciating those diferemes is to observe the properties of the sygotes which they form Ant as it talaes two grmetes to form a 2 gete, we are in the position of atteropting to decide the preperties of two unknowns fram one kwomn. Fortunately the problem is nat entircly one of simple mathertatics. It can be attacked by the expermental method, and with what cheasure of success will appear in the bollowing pages

To Gregor Memide monk and abbot, belongs the credit of founding the modern stefence of horedity Through him there was beought into these problems an enticaly new idea, an enticely frash concepation of the nature of living thinge Borm in 58.22 of Austro-Silesjan parentage, he early etitered the monabtery of Beinnm and there, in the sedusion of the cloister garden, he carried out with the common pea the gerjes of experments which has since become 50 tamous. In 18 面5, after etght gearg work, he published the resulte of his experiments it the
 in a brief paper of some forty pages But brief ag it is the importane of the resulta and the lucidity of the exposition wit] always grive it bigh rank among the classics of bological liternture, Foc thirtyrive wcars Mendels paper remained moknown. and it was not winti] Igoo that it was gimultaneongly discovered by scweral"distinguished botanists. The causes of this charions nagtect are rot altogether without interest. Hybridigation experiments belare Mendal there hav beer in plenty. The classificatory work of Ifnnneus in the latter lade of the eighteenth
gentury had giver a dennite significance to the word species and scientific meth began to turn their attention to attempting to disober low opecies perc related to one another. Ant one obvious way of attacking the problem was to cross different. species together and see what happerterf. This was largely done during the earlier half of the nimeteenth century, though such worle was almost entifcly confored to the botaniste. Apart fom the bert that plants lend themselves to hybridisation work more readily than animals, there was probabily another reaton why wollogists neglected thas form of hwegtigation. The field of anology is a wider one than thut of botany, presenting 哉 far greater vericty of type and strugture. Party owing to their importane in the study or modicine and partly owise to their smaller numbers, the anetony of the wegetable was fis better kiowth than that of the a aimal hindedon. It is, therefore, not surprising that the carlier part of the minetoenth century found the zoologists uptor the induenee of Cuvier and his pupils, deroting their entire energies to degribing the anatomy of the new forms of animal lie which cutemat soth at home and lresh woyages of discowery abroad were continually bringing to light During this period the 2ondogist had little inclinalion or inducement to cardy on thoge investigations in hybridesation wholh were otetiphig the attention of some botaniste. Nor did the efforts of the botaniste afford math encouragement to 5 ach wark, for in spite of the labour deroted to these experiments the results ofiered but a confused tansk of facts, wontibutimg in no apparent way to the solution of the problem
tor which thegr liad been undetaken. After balt a contury of experimental hybridisation the determination of the relation of species Rnci variethes to one日nather gemed this remote as ever. Then in 1859 cme the Origio of Sprith in which Darwin pregerited to the warld a conisistent theory to account For the mamper in which gnc spocies might have arisen from another by a profess of gradual evolution, Brictiy puts that theory was as Eollows:-In any specien of plant or arithal the reproductive comenty tends to outrim the avatlable foci-gtupply and the Jestilting compattion tends to an inewitable straggle for cwiscence. Ot all the individuals born, ondy a portion, and thet often a very small one can surejve to prodite offering Acroting to Darwin's theory the sature of the surwipig potion is nat determined by chance alone. No two individuals of a species are preetiely alike, and among the wariations that wecur some enable theit pogsessers to cope more successhally with the competitive conditions under which they exist. In compartson with their Iess fawoured brethren they have a better chance of surviwirg in the struggle for ewistence and consequently; of leawitg offsping' 'The argument is cotipleted by the further essumption of a principle of beredity, in witiue of which offepring tend to resembile their parent more thatiother members of the speres Parente pessesting at womable Wariation tend to transmit that variation to their ofisprigg, to some in greater, to others in less degree Those possesping it in greatef degec will agaim hate at better chance of surwival the tuill transmin the favourable wariation in everl greater degree to
some of their affepring. A competative 踖uggle lor existence working in combination with ctrtain principles of variation and herdity resulta ith a alow and continupus transformation of species through the operstioni of a propess which Darwin termed nateral selection.

The cohevenco and simplicity of the cheory, supported as it was by the grocat array of facts which Darwin had patiently marshalled tegetiocr, taproly gained the enthusiastic support of the great majority of biologists The problem of the relation of sperjes at last appeared to be solved, and for the next fonty years zoologists and botunists were busily mygaged in chebsilying, by the light of Darwim's theary, the great masecs of anatomital facts which bad shendy accumulated, nnd in addine and blassifyita fiesh onies The study of comparative anatomy and embrolagy received a new stimulds, for with the acoptance of the theory of descent with modifoction it became incumbent upon the biglogist to aemonstate the manter int which andinals and plants difering widely in seructure and appearance could be concervably peinted to one another, 'Thenceforward the energies of both botatiste and zoblogiscr have been devoted to the construction of hypothetical pedigrees enggesting the various tracks of evolution by which ane group of antmals or plants may bare atigen froma another through a loryecontmued procest of riatural selection. The result of such work on the whole may be said to have shown triat the diverse forms under which liwing thing exist today and Fowe extisted in the pasti so far as palaepntolagy can tell us, are consigtent with the view that they are all
pelated by the community of desent which the accepted theory of ewolution demands, thoum as to the exact course of descent for anty particular group of animals there in often considerable diversity of opiniari. Et is obvious that all this work has Jitule or nothing to do with the manner in whith speciog are formed. Indeed, the cifiece of Darwin's Origit of spatas wath to diwert attention from the way in which epecies orypinate. Al the time that it was put formard his explanation appeared so gatisjer ing that biologises acepted the notiong of watiation and beredity there set forth and censed to teke eny futher interest in the work of the hybridusers. Had Mendel's paper appeared al doten years carlife it is difficult to belleve that it could have failed wa attract the attention it descrved Coming ass it did a few yetre atter the publication of Darwitis great work, it found inem's minds set at rest on the problems that he ralsed and their thoughts and energies directed to other matters,

Nenetheless, one interestimg and noteworthy attempt to give greater preciston to tbe term hotedity mas mace about this time. Francis Gelton, a cousith of Darwin, working upon data relating to the bredinte be Baget hounds, found that fee eould cxpres on a definte statistical scheme the proportion ito which the different colours appeared in successive generations. Firery individual was conceived of as porsersiag a definte heritage which might be expressed as Lrity: Of this, was on the average derived fom the two parents (ex. $\frac{1}{4}$. Toun each parent) $\frac{4}{4}$ from the fout grajidparents, 受, from the eight greatgrandparents, and so 0n. The Lazw of Awcsoral

Feratity，as it waid termed，expreses with Eir accor－ racy some of the statistian pheacmena relatiog to the trensmiscion of characters in a mined populationis But the problem of the way th which characters are distributed from gamete to zygotr innd from xygote ＊0 gamate remained as beforc．Heredity is essern＝ tially a physiological problem，and theugh siatistics may be euggestive in the intidetion of experiment．絡 is upon the basiz of experimemtall 「ath that progress must ultimately rest For this reason，in spite of its ingenuity and originalitys，Galton＇3 theory and the subeequent statistical work that has becm founded． upon it tailed to grive use fily dacper insight into the nature of the hercultary protese

While Galborl was workings fut England the Geman zoologist，Augug Weismanne was elabora－ thag the compligated theory of hercdity which eventually appeaced in his work oni The wernhostar （1885）a book which whll be semmbered for one notable contribution to the subject．Until the pubw lication of Weisman＇s wart it bad been genstally necepted that the modifications brought anout in the individual during its lifetime，through the varymge conditions of nutrition and enviranment could be traperpitted to the eflopring．In thit biotogiets were buf bollowing Darwin，who held that the changes in the patent realting from increased use or disuse of any part or organ were pased on to the ghildien． Weisminn＇s theary involved the conception of an starip cleavare betwent the genarel body tissues or somato－ plasm and the reproductive glands or germplasm． The indiwdual was mency a carrier for the essencial germplasm whoge propertios had been determined
long before he was capable of leading a scparate cxistene- As thia bonejotion ran counter to the possibility of" the intueritance of "aoguired characters," Wresmanr challonged the pvidence upon which it regied and showed that it broke down wherewer it was critically examined. By thus compolling biologists to rewise their $\mathrm{id}=a \mathrm{~s}$ as to the inherited cffects of use and disusc, Weisionatr rendered a valuable service to the study of gemetica and did much to clear the way sor subsequent resparch
A. Wuther important step was tiken in I8g 5 , wher Bateson once more drew attention to the problem of the ongin of species, and questioned pheiher the accepted ideas of majation and teradity wore atid all in consonance with the focts: Speakitg generally y_{1} species do not grate gradually from on to the other but the differences between them are sharp and siucific- Whence comes this prevalence of diserontiulity if the process by whing they have tuper it ane of accumulation of minute ath athost infers. ceptible differences ${ }^{7}$ Why are not intermediates of ald gorts more abundantly produced in mature tham is actually kiown to be the case? Bateson sule that if we ase ever to answer this question we mert have more definite knowledge of the inture of varia. tions and of the nature of the Eereditary prodess by which these veriations dre timsmitted. And the best way to obeain thag knowledge was to let the dend alone and so return to the study of the liwing. It was trat that the past record of experimental boeding had heen mainly ane of disappointment It was true also that there way no tangible elue by which experiments cuight be directed in the present.

Nevertheless in this inind of wotk alone semed there日ny pronise of ultimate success.

A few years later appeared the first volume of de Vrieq remarkble book olt The Matabo Thedry. From an prolanged study of the erenimg primrose (OwnHRat) de Vijes concleded that new waticties suddenly amse from older ones by sudden sharp steps or matations, and not by any process involving the gradual atemmulation of minute differeneas. hhe number of striking cosee from among widely different plants which he was able to bring forward wert 应 to convitcitg blologists thet discontimity in vadja* tion was a more widespread phenommon than had bithefto bech suspectsal, end not a ficw began bo question whether the account of the mode al ewalution so ferierally accepted for forty yease was after all the trwe account, Such, in brief, was the ontlook in the central problem of biology at the thme of the rediscovery of Mencel's work.

CHAPTER III

MENDEL": urgNK

THE task that Mendel set before himself was to gaim some clear conception of the matner is which the definter and fixed varieties found within a speches are related to one another, and he realised at the qutset that the best chance of success lay in working with material of such a reature as to reduce the problem to its simplest terme He decided that the plant with which he was to worly must be nomally $=$ effertilising and malikely to be crosed through the interference of insects, while at the same time it mint posecss desnite fixtd warieties which bred true to bype In the sommen pea
 A bardy manal, prollific, edsily morked, Pushom has a further advantage in that the inseots which nomally tisis fowes are unable to gather pollen From it and so to frimg about efoss fertilisation. At the same time lt existe in a momber of strains presentivg wellmarked and ixed differences. The flowers may be parple, of red, ar white; the plants may be tall of dwarf; the ripe seed may be yellow pr gremp, pound or wrinkied, cuch ate a few of the
characters in which the various races of pots differ from one anthers
［n planting his cossing experimente Monched adopted an ateitude which marked him of sharply from the earlier bybrtulere He lealtised that their failure to ebucidate ang gencal principle of beredty from the result of aross fertilisation was duce to their not having comentrated mpon proticulat characters of traced them carefulty throurth a sequence of gemerationts．That spurce of fature he was cancul to rwoid，and throughout his ex－ perments he crosed plants presmitiog sharg y oontrasted cligtacters，and devoted hiz chorts to observing the belaviour of these eheatacters in Succesive genchations．Thus in one serics of cx－ perments he concentrated his attention on the tansmission of the clunacters talloes anu drant－ Hess，neglecting in 50 Fer as these experiments wenc comberned ary other charactere in which the parent plants might difter from ome another，For thes purpose be chooe two staing of peas，ond of about 6 beet in heghem and enother of about 1 l fect Previons testing lasd shown that ouch shath bed true to its peculiar height．These two strabinc wore arbificially coossed ${ }^{1}$ with one envether，and it whis found to make on differente which was used as the poilen parant and which was used as the owve pafent．In either case the result wes the samo The result of crossing tal］witli dwarf was in evory case nothing but talling as tall or curat at litte taller that the tall Perent For this reason Mendel termed talloess the dominant and dwarfne：s tho

[^0]recessive chararter. The next stage was to collect and sow the seeds of these tail bybride Such sechs in the following yoar gate rise to a mimed genemtion consisting of talls aud dwarls bat
 of such plante Merdel was able to ebtahlish the bet that the number of talls which gectired it this geforicion was almost exactly three cinses ex great as the number of the dwarts As jn the previous year, seed were crepully collected from this, the second joybtid getheration, and in every ense the sums
 arde separately sout in the forbwher yraw By this respoct for the individuality of the different plants, hownew stosely they febembled one arother, Mendes found the elue that had eluded the eftorta oil all bis predecessary The soede collected Erom the dwarl precsives bred tuly, githite nothing but dwafs. Asd this was toue for every durat testeri. But with the talls it was quite otherwize. Although indistinguish eble in appoarance, some of thenth bred true, while others behaved like the original tall hybrids, giving a Bentration sontsistity of talts हח-d deatis in the propartion of there of the [ormer to one of the hatter. Counting shored that the number of the talls which gave
 dwafls was dauble that of the palls which bred true,

If we denote a dwat plant as \bar{D}, in true breding tall plant es 7 , and a tall whici gives both talls and dwath in the ratio $\frac{3}{\text { a }} \mathrm{I}$ as T(QD), the result of thase experiments maty be briely summarised fin the Eoregoing scheme,

Mendel experimented with other palrs of eontrasted thatmoters and found that in cvery instance they followed the same scheme ol inheritance Thus colourd fowers were dominant to white, in the ripe seeds yellow was dominant to green, and round thap was dominant to minkied, and so one In every case where the thheritence of an athernative pair of claracters was concerved the effect of the orbes in succesgive generetions was to produce three and only thre diferent sorth of individusla, riz dominants which bred trees dominkits which gate both dominent and recessive officing in the ratio J ; t, and recessives which always bed true- Having determined a geineral schame of inheritance which experiment showed to hold good for eacl of the seven paire of arternative charaders with which he worked, Minedel st himse[f to providing alteoretical interpatation of this schere which, as be clearly fealiced, must be in terms of germ cells, He con= beifed of the gametes as lueaters of something capable of eiving rise to the characters of the plant but he regarded any indridual gamete as being able to canry one and one caly of any alternative pair of characters. A given gamete could carry tallings ar dwarfiess, but not both The two were mutually

extluspe so $\sqrt{\text { ar }}$ at the gamete was colocerned. It mast be pore for one or the other of stacha pairs, and this conception of the purity of the gametes is the mast essential part of Piendel's theory.

We may nop proced with the help of the acompanying acheme (Ftg, T) to dedute the tesults that shauld fow from Mendel's conseption of the notute of the gathetes and to sed how For they are in ancordance with the fects sines the origimal tall phant belonged to a straln which bredi trus ali the gametcs produced by it must bear the tall character. Similarly all the gam= etes of the original

Fin, I.

 by laser Eimet. duarl plant must bear the dwari character. A cross between thege two means the union of a garmese rontainimg talliness with one bearimg dwatriegs During to the completely fominsat nature of the fall tharacters subl a glant is in appentance indigtimguislable from the joule tall, but it riffers markedly from it in the mature of the wametes to which it gives rise When the formation of the gametes ncturs, the elements repesenting duarimes
and tallues segregate from one anothers so that half of the gametes produced antain the one, and hitl contain the other of these two elements for on hypothesis every gamete must be pare For one of other of thase two characteres And this is wue tor the swules as well at for the pollen gming Surh hybrid F_{1} plants, therefore, must produce a series of DVuln consisting of those bearing talloess and thoge bearing duchlfers, mot must produoe then in equal numbers, And timilarly the pollen drains. We may now calculaty what should bappen when suct a geries of pollen grains mets such a series of otules a. . the nature of the generation that should be produced when the hybrid is allowed to tertillse itself. Let ts suppose that thare are 4 구 ovules so that $2 x$ are "tall" and zar are "dwarf." These are brought in contect with a mass of pollen grains of whith balt ate "teall" and hall ate "durat." It is obvious that a "talla" ovule pas an equal chance of being fertilised by a "tall" or a " swart" pollen grain. Hende of cur $2 x^{\prime \prime}$ " tall " owulets $x^{\prime \prime}$ will be fertiried by "tall" pollen grains and x will be fertilised by "dwarl" poilen graits. The former must give rise to tall pranter and since the dwarf tharacter hns bocn entirely eliminated from them they must jow the fature bravil trase fine later must also give rise to tall plants, but since they carry also the recessive dwarf charaster they must when bred from produce both talls and dwaris. Each of the zas dwarf owules, agajn, has an equal chatce at heing
 Hence x will give rise to tall plants corrying the procgsive dwarf character, while x will produce
plants from which the tall character bas been climinated t, to plere recessive dwarls. consequently from the 4 geves of the sell-fertilised hybrid we aught on ottain $3 x$ tall and x dwars plants. And of the $3 x$ tella x should bred true to talluess, while the remaining 2 .r, havith been forthed like the orisithal hybrid by the union of a titall." and a "dwart" ganete, ought to behave like it when bred from and give tails and dwarts in the ratio 3: - I_{2} Now this is precisely the resule actuilly obteinsd by experiment 《cfa $p=[y)^{\prime}$ and the close accord of the experimentel resilts with those deduced on the assumption of the puxity of the gametes as entinciated by Mendel affords the stomigest of arguments for remarding the noture of the gemeteg and their selation to the Gharacters of the rygotes ins the way that he has done.

It is possible to put the theory to a firther lest. The explanation of the 3 ; 1 ratio of domitunts end recessived in the F_{a} generation 1 is regarded as due to the F_{i} induviduals pioducing cqual numbers of gamere bearing the dominant and vecesive ctements respectively, J il now the F, plant be erosed with the pure recessive, we ate bringing together a series of fametes consisting of equal mumbers of dominants and mocesives with a series consisting solely of Hecessiver We anght boris sheh a cross to obexit equal numbers of domitant and recesive individuals and further the dominates so produced aught ald to give both dominants and eocestincs in the patio 3: T when they themsenves ane bred form. Botb of these expectations were amply confirmed by experinent, and conssing with the recessive is now a
ratognised way of testing whether a plant or amimad bearing a domipant elaracter is a pure dominant or an imphre domintint which is terying the recessine character. In the tormer oase the ofliprijng will be all of the dominant form, while in the lattci they will consist an the average of equal numbers of fomipants and vecessives.

So far we bave bedn concented with the results obtained when two individuals difforg in an single pair or charactery ate cosped together and with the interpretation of those resulta. But Mendel also Hed plants which differen in move than a single prif
 that each peir of chanacters fallowed the sathe defnitc fule, but that the inhcritance of each pais was absolurely independent of the other Thus, for cxample, when a tall plant baring coloured Howers was cobsed with i. dwaff plant bearing white flowerg the pesultheg bybrid was it tall plant with coloured Howers. For coloured fowers are domiannt to white, and tallones is dominant to dwatrees. In the succerdiag gengration there are plants with colotred flowers ind plants with white howers in the proportion of $\xi=\mathbb{T}$, and at the gante time tall plants and dwarf" plante int the same proportion. "Hence the chnnces that a tall plant will powe coloured flowers are three times as great as its chance of having white flowers Arid this is also true for the dowart plamze $A s$ the result of the eross, therefore, we should expect ant F_{n} generation consisting of fout classer, wize coloured talle, white talls, coloured dwarls, and white dwarls, and we should furthe expect shese feur forms to appear in the ratio of

9 colotared tails, 3 white talla, 3 coloured dwarfs and 1 white dmari. Fou this is the only ratio which satisfies the conditionts than the thalls shorld be to the dwarfs as. $3: I_{\text {, }}$, and at the surne time the colotared should bo to the whites as git. And these are the proportions that Mendel Found to obtain actually in bic experiments, Put in a more gencral form, it may be stated that when two indepiduals are crossed which differ ju two paire of differcitiating chatmeters the hybrids "F F_{0} are all of the same form, extibiting the dominame character of each of the two pars, while the \mathcal{F}_{g} gencration produced by such hybrids consists on the onverage ot p showing both dominants, showing one domimant and orie recescive, 3 ghowing the other dominant and the other recessive, and I ghowing both recessive characters. And, as Mendel pointed out, the principle may le extended indefindely. If, for exampler the parenta dider in three pair of characters A, B_{p} and G respectively dominath to a, b, and c, the管 indeviduals will be all of the form $A B G_{a}$ while the F_{2} gertetation will constst of $27 A B G_{2} 9$ ob
 When individuale diferdige in an number of altemative chatecters ate cropsed together, the hybrid gencration, provided that the original parents were of pure strains. consists of plants of the same form; bat when these are bred from, 㸗 redistribution of the yarioug characters cocurs. That redjethoution follows the sime cielinite rule for each character, and if the constitution of the ofiginal parents be known, the nature of the F_{2} gendration, fich the mumber of $^{\text {a }}$ porsible roms and the proportions in which they
gccur, call be readily calculated. Marmover, as Mendel shoved, we can calculate also the chances oi aty given [ora broeding true. To this point, hawewer, we shall retarn later.

Ot Mendell's experiments with beans it is suftient to say here that they corroborated his thote ample work with pas. He is also jnown to heve made expariments with many other pidnts, and a few of Jiforsulte are incodentally given in his series or letfers to Nitgelf the botanist To the breeding and crossing of bees he aloco devoted much time and artention, bat umbappily the recont of these experiments appeas to have bsen lost The only other published work that we prosess dealing with herectity is a bried paper on some crossing experiments with the Hawliweeds (Fistanam), a genus that he choge for working with bocause of the enormpus mumber of forms under which it naturally exists. By crosing together the moce distint watjeties, he evidenty loped to produce some of these mumerous wild forms, and so throw light upon their ortgin and meture. In the hope he was disappointed. Dwite in part to the great technoth Biffothtes attending the crogs-ter tilisation of these flowers he succesded in obtainimg wery fow hybridg. Moreower, the behaviour of thos which he did obtain was quite contary to what he land loutd in the peas. Instead ai giving a variety of forms in the Fo gemeration, they bred brwe and continued to do so as long as they were kept under observation. More recent research has shown thet this is due to a perultar form of partherogeneses
 to separate clearly from ore another in the gametes.

Mendel, however, could not have known of this, and his indbility to discover in Fieratim any indication of the rule which he haid foutid to hold good for both peas and beens must have been a soutce of considerable disappontment, Whecher tot this renson, or owing to the utter neglect of his work by the scientife world, Merdel gave up his experimental researches duting the latter part of his lifer His elobing wears wate, skadowed with ill-health ard erbbittered by a controversy with the Government on a question of tho wighte al his monantery, H e aled of "Brygt's ditease in 1884.

Nots-Shonty after the rediscowery of Mendel's paper
 bonguiturion of individuals is reppect of inherind characteres nod Butesm acoordingly proposed the mordis homorygote and heterozygere. An individual is said to be homo2fgous for a given character when it has been fomed by two gametes each bearisp the chancter, and all the gameses
 nomorgaus. Winen, bowever, the zegot is formed by
 fole other does mon it is saich be be hetcroxyenus tor the tharacter in quescien, snd only thalf the gatiene prodmeen by such a beterosygote baiar the character. An medividurl may be nornozpous for one or thofo charicterg, itud at the seme time mily be haterorgaus for othees

CHAßTER IV

TLE ARESFWCE AND ABEENCB THEOEW

It was formate tor the development of biolorical scicave that the rediccover of Mendel's work foumd a small group of biolagiste ceeply interested in the probiema of heredity ind thamelves cheraged. .n experiniental breediag To these mom the extraordinary sexplotance of the fiscovery was at once apparat From their exporiments, undertaken di
 Tscherratk were nble to oonfrot his pesults int pras and other platis, while Bateson was the frat to demonstrate their application to anmals. Thenceformad the megrd has been phe of steady progress, and the resu]t o[ten years' work has hech to establish more and more firmly the fondamental nature of Mencelts discovery ${ }^{\text {the }}$ he schene of inberitarte, which he was the first to enomeiate, buts been found to hold good for such sivere things a hoight, hairsiess, and fower coloht and flower form in plants the ghape of polien grains, and the structure of Exuts ; while among atsinals the coat colsur of masmale, the form of the feathers and of the cond in poultry, the waltzing habib of lapanese
mice, and eye colour in man are but a fen examples of the diversity of chatacters which all folifow the same law of transmisston. And as time wert on many cases which at first secmed to fall without the scheme have been gradually brought into line in the Lembt of fuller knowledge. Some of these will be

dealt with in the succeding chapters of this book. Monnwilc we may concern ourselves with the single modification of Mendels original wiews which has arisen out of more ample krowledge.

As we have already secn, Mendel considered that in the gamete there was cither a definite something comesponditig to the dominatit chathecter or at defaite something corresponding to the recessjur clatactern
ond that these somethingswatever they were could not oocxist in any shogle earate. Fios these somethinge we shall fu future usg the term factor, The factor, then, 予 what cotreg pond in the gamete to the unltoharacter that nppeas in some shape or other in the development of the zygote. Tallnes in the pea 45 E Giththatacter, and the gewetos in whill it ta

Tid. ${ }^{3}$

represcnted are said to contaid the factor for taliness Beroud thair existeroe in the gancte and their mode of transmission we mathe no sugecstion fis to the nature of these fectors

On Hendel's wiew there whs a factor correspouting to the dominant character and another fuctor cortefponding to bhe recessive charatter of each alternative pair of unt-charactere and the characters wete alternatiwe because no gamete oonld cancy more
than one of the two factors belonging to the alternative pair, On the other hawd mendel supposed that it always waried either one or the other of guch a pair. As experimental work procested, it soon became clcar that there wrere mases which could not be expressed in terma of this conception. The nature of tlee difficulty and the way ini which it wes met will parhaps be best inderstood by concisidering a set of expariments its which it cocurred. Many of the ditherent breeds of poultry are characterised by a paticisar tom of womb, and in dertain cases che thneritance of these has been carefonly worked out It was shown that the rose comb ($\mathrm{F} \dot{\mathrm{j}} \mathrm{g}$ 4, B)
 wandly projecting pike was dominant in the ordinary way to the deepiv serrated high single comb (Tige $4, C$) which is charanteristic of the Mediterganear races. Experintit atse showed that the pea comb "Fig 4, A") a torm with a. low centrel and two wel]-deve[rped lateral ridges such as is found in Incian geme bchawes as a simple dominant to the singe comb. The intet= esting question arose as to what would happen when the rose ard the pea, two forms each dominent to the same thind forma were mated together. It seemed
 mative to the same thang woid be a mematape to one aupother-that either tose or pea would dominate in the hyblids, and that the $F_{\text {a }}$ gencration would consist
 mesult of the experiment we ${ }^{\text {b }}$, howewtry very different. The crose rose x pea led ta the' prodection of a comb quite unlike either of them. "This, the so-called walnut comb $\left(\mathrm{Fi} \mathrm{s}_{\mathrm{s}}\right.$ 4, D), from its tesemblance to
the hall of an walnut, is a type of cotrbly which j s notmaly charneteristic of the Malay fowl. Moreover when these F_{j} bitds were bred together, a further 4nlooked- for rescilt was obtaned. As was expected,

Fite +

there appeared in the \mathbb{F}_{g} generation the thee forms palnos, rose, and pea, But there alpo appensed a delinite preportion of single pombed birds and among ftiny hutudueds of chickens bred in this way the propoctions in which the Eour loms walnet, rose, pean and single appened was 9 : 3 : 3 I 1. Now this,
as Mendel chowed, is the ratio rotind and $E_{\text {a }}$ generation when the original perenes difier in two Pairs of altertative chereters, fud trom the propere tions in which the diferent forths of combegeur we mipst infer that the wulnut contains both damintints, the rose and the pea one dominam enctip while the simgle is pire for botll recessive churacterg. Ihis
 nccorded with sulbsequent breeding experigenta, for the singles bred perecty frec as soon ase lhay had onow made theis appearance. So far the cede to clear The difficulty comes when we attempe to define these two pairs of characters. How are we to expicss the Eact that while single behaves ás a simple recessive to either prite rose or to pure pea, it can yet
 [orms, though nether of them should, on Mendel's wiew, contain the singles An explanatton which covers the facte in in simple way is that which has been fermed the "Fresence did Abusuce" theory, Gn this cheory the dominant cheracter of an afternative padr owes its dominance to the fresence of a fector which is absent an the recessiver The tall pea is tall owing to the presence in it of the ractor for talluess, but in the abscnee of this factor the peas pemains a dwati. All peas are owarf, but the tall
 Inatead of the characters of an altermative pair being due to two separate factors, we now regard then ag
the expresion of the only Lwo possible states of a single Eactor, wize its jpesence or its absentre. The conception will probably leoome cleater in we follow its applicatious in detail to the case of the Cowt's combe. In this case we are comcerned wich the trangmission of the tor lactors, rose (r), and pea (Py the presence of each of which is alfernative to ite absence. The tobecombed bird contains the factor for sose bet mot that for pea, and che pea-combed birt eontains the factor for pea but not that for towe When both factorn are present in a birda as in the hybrid made by crossing rose with pea, the fesult in a walnut For convenioner oin ergument we thay denote the presence ol a fiven factor by a capital letter and the abence by the corresponding smatl letter The use of the small letter lis merely a symbolie way of intimatire that a perticulas tactor is ebsent in is amete or zygote. Represented thus the aygotic constiturion of a pure rase-combed bird is 元Ry; for it has been formed by the umion of two gametes both of which contained R but not F^{F} Similarly we may denote the pure pea-combed bird as wos, On crositg the rose with the pear emian octurs botwer a gamete R g and a ganete ir resulting in the formation of a heteroargote of the constitution $\overline{\text { Fr }} P \mathrm{P}$. The use of the small letterg here iritornh us that such a zyote containg only a single dose of ench of the factors R and P, although, of course, it is porsible for as gyonte, if made in a suitable way, to heve a double dose of any laetor. Now whet such a hird comes to form gametes a saparation tekes place between the part of the tygotic cell containing R and the part which does
not contait it for Half of ite gamete, therefore, witl contalich $\begin{aligned} \text { f } \\ \text { and the other half will be witheut }\end{aligned}$ it (ry), Similarly half of ita gametes will contain and the other half will be without it $(\phi]$. It is obwious fhat the theuces of A being distributces to a gamete with or without P are eq̧al. Herce the gametes containng \mathcal{F} will be of two sorts, P, A and At, and these will be produced in equal mumers. Similarly the gametes withous fr will also be of two sonts, $+D$ and p, and thest, agan, will be produced in equal numbers Each of the hybrid welnutcombed bites, therefore gives fise to a seriks consisting of equal numbers of gametes of the four different lypes RP, Rh, $+P^{\prime}$, and y, and the breding toggether of suct F_{i} birds means the bringing together of two such gerics of gametes When this happens
 chance of leing fertilised by a spermatozonis of any one of the four types. A cosvenient and simple method of demonstrating what bappens under such circumstances is the metbod sometimes termed the "chessboard" method. Fior thro serjes each con" sisting of four different types of gamete we require a schare divided up into if parts The four terms of the gatietic series are first mritten horizonally across the four sets of four squares, so that the series is repeated four times. It is then writuen vertierlly four times, cate being talken to kerp to the same order, In this simple mechanicat way all the possible combinations are represented and in their proper proportions, Fig- shows the resula
 and the 16 squares repregent the different himds of
zegotes formed and the proportions in which they occur, As the fieur shows, gygoter conem both元 and P_{u} heving a double ar a single dogn of either or both of these factorts Such birds mest be all wrant combec. Thige rut or the 10 zy eotes contain A but not P, and

$\begin{array}{\|l} \text { Re } \\ \text { RP } \end{array}$		$\begin{aligned} & \mathrm{FP} \\ & { }_{y} \mathrm{P} \end{aligned}$	$\begin{aligned} & R P \\ & R P \\ & \end{aligned}$
W'ranut	Whatas	Wislat	Whataut
$\frac{\mathrm{Rp}}{\mathrm{KP}}$	$\begin{aligned} & R p \\ & R_{p} \end{aligned}$	$\begin{aligned} & \mathrm{Fp} \\ & \mathrm{FP} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{R} p \\ \mathrm{~T} \end{array}$
Whalmut	Rote	Walact	Fare
$\frac{\mathrm{tP}}{\mathrm{RP}}$	RP_{p}	${ }_{t P} P^{\prime}$	$\begin{aligned} & \mathrm{TP} \\ & \mathrm{P} \\ & \hline \end{aligned}$
Walcut	Wrant	Pen	Pe
RP	\mathbb{P}_{p}	$\mathrm{mp}_{\text {¢ }}$	
Wratrat	Rose	Pea	Single

एँ 5.

 these must be rose-combelbids
 tain P but mat R and must be per combed birds. Finally bne but of the I 6 contains neither A nor P. It cannet be rase - it cannat be pea. It. misct, therefore, be sotething else Asa matter of fact it is single Why st stould be singte and not something else follows from what we alendy know about the bebervour of these yarious forms of combs Por rosc is dominant co gingle; therefore on the Presence and Absence Eknory a roee 路 in aipgle plus a fuctor which turas the single into a rose, It we could remove the " rote" factor from a roserginiod bird the underlyitt girkje would come incoriew Sinuiarly apea conbis a siryle plus a factor which turne the single into a pea, and a walont is a siugle which posacsese tro additionsl podifying factors, Singleness, in fact, onderlies all these combs,
and 3 f ure write sheic zygrtic constitution in fill we must denote a walrul n. RPPPSS, a tose as Rhops, a pea as ropss and a single as mps S. The crossing of sose with pea cesults in a frehuftitg of the Eactors eoncerned and in accordence with the: primgiple of segregation sonte sygotes ate formed ir which foither of the molifyity [ectors Ω and P are present, and the single character can then become manifest

The Presence and Absence theory is to-day generally socepted by studente of these matzers. Not only does it afford a simple explatation of the remarbable fert that in all cases of Mentelian inaharitance we should be peble to expenss out tenitchapacters in terms of alterntive pairs, but as we Shall have occasion to vefer to latery it pusesty a clue ats to the course by which the various domesticated wrieties of phant rand animate hawe anten from their wild prototypes

Betare leaving that topic we may dew atention to some axperimants which ofer a pretty confimiation of the wiew that the rose comb is a sirgle to which a modilying factor tor roenens jas bech. added. It was aratacl that jit we bould find a type of eomb an wrich the factor for singleness was absent, then an crossimy such a consb with a rose we ougith if singleness really underlies rowe no obenin some sisfle tomide in \mathbb{F}_{0} trom such a cross, Such ne combe wad the good forture to find in the Breda fowl, a breed lergely wed in Holland. This [ow is usuatly apoken of as combless fou the jiace of the comb in taken by ar coverint of chent bristlelike reathers (Fig, G, D), In reatity it possesses the
westige of a comb in the form of wo minute teteral krobs of cont tissuc. Characteristic also of this bread is the high developoinent of the horny thestrils, a teature probably corselated, with the almost com-

Figr \boldsymbol{K}_{1}
 아
plete absence of comb. The first step in the experiment was to prowe the absemee of the factor for singleness in the Bredia On crotsing Breda with citrgle the F_{y} birds exhibit a large comb of the foritu of a double single combe in which the two
partions are unted atiteriorly, but diverge from one anothe towards the back of the head (FEE. © C) The Dreda contains art elemerth of duplicily which Is domionat to the simplicity ut the ordionary sincte comb. But it cannot cotatain the factor for the single comb, because as soon as that is put into st by crossing with a single the comb assumes a darge sixe, and is tetailly distinct in appearsmer foom fth almost complete absence in the pure Breda. Now Wheri the Breda 35 crosed with the rose duplesty is dominant to simplicity, and rose is dominant io

Jactit of comb, and the F_{1} generation consiats of tirds poseching dupler rote combs (Fig G, A and B). On beeding such birds together we obtain a gemeration consisting of Bielias, duples roses, roses, duplex singles, and singles. From our prewious experintate we know that the singlen oculd nat have came form the Breda, since a Brede conte to which the foctor for single has boen added no longer reinains a Buedin Therefore it must have come from the rose, thus conforning our wietw that tue rose is itm reality a sugle comb which contains in addition a dominant modifine hactor (${ }^{\text {b }}$) whose presence turns it intc
in rose We shall take it, therefore, that there is good expreimertal eviderec [or the Fresence and Absence theory and we shall express in terms of it the varions cases which come up for diseussion in succeedids chapters.

CHAPTER V

INTEJACTHON DF FACTQES

We teve now reached a point at which it je possible to formulate a defoite conception of the biving orgatisme A plant or acimal is a liring entity whoge properties may in large menaum be expressid in terms of unitcharacters, and it the posecspon of at Froatci or lesser number of such unisechatecters senders it possible for us to drap slarp distinctions between one itidividuat and amother. Thase unit-
 ganete which in the process of heredity behave us indivisible entities, and are distributed according to a definite shene The factor for this ar that mutcharacter is either present fis the gamete ol it is not present. It must te there in its ensirety or completely aboent. Such at any rate is the wiew to which recent experiment has ied u5. Ber as to the nature of thete [actors, khe conditions under whict they exist in the gamete, and the mancer in whicm they produce their specific effects in the xygete, we are at present almosc completely in the dark.

The cate of the forls conder prens up the inportent question of the extent to which the vandous factors cun infuence whe another in the xygote.

The rose and the pea factors are separate entitiens and each when procnt alone produces a pertectly distinct and characteristic effect upon the situgle comb, turning it into a rose or a pea as the case may be. But when both are present in the same Byete their combined affect is to produce the walnut comb; a comb which is quite alstinct Erom eilher and in no sense intermedtato betworg therm, The question of the inderco of factore upon one another did not present itself to Mendel beceuse he worked with cheranters which afterted diflerat parte of the plant It was unlikely that the factor which led to the production of colous in the flower would apect the sthepe of the pod, of thet the heigbt of the plant would be intuented by the presene of absence of the faccor that anermined the shatere of the ripe sed. But when several fectors can modify the shme structure it is reatomble to suppose thent Wey will influcnce ore another in the effects which their simultaneous presence hes upon the rysoteBy themelves the pea nud the roge factors cach produce a definite modifigation of the sitg gle comb, but when both are present in the argote, whether as a single or double dose, the modification that results is quaite diferent to that produced by erther when present alone Thus we are lod to the onception of characters which depend for their manifestation on wore than one fator in the zygote, and in the present chapter we may consider a few of the Fhenomena which result from such interaction between scparate and distince factors.

One of the nose interesting and inetructive cases in which the interaction between geparate factors her
been dempnstrated is a sase in the swett-pea All white grocet-peas bred true to whiteness. And gencrally speaking the result of crossing different whites is to produce rothing but whites whether in F_{1} or ith suraeding generations But there are cortain strains of white sweet-peas which when erosed together produce only coloured flowers. The colohr may be diflerent in diflerent coses, thouph for our present purpose we trey take a case in which the colour is red, When such reds are allowed to selffertilise themedves in the noumal way and the geods som, the eesulting F_{a} generation consists of reds and whites, the forme leing rather more numerows than the latier in the propotinan 059:7. The faising of a
 further gereeration from the seede of these F_{e} plarith shows that the whites always breed true to whitences, but that differend reds may behawe differetitly, Sprec breed true, others give ieds and whites in the ratio 3: t_{n} While othere, again, give reds ind whites in the rato gif. A B, it the case of the fowls eombs, this case may be interpreted in termb of the preaence and absence of two fectoren Red in the swot-pea results from the interaction of two fectors, and mnless these ette both presefit the ed colour canot appear. Esch of the wbite parents carried one of the two lactors whose internetion 5 necessary for the production of the red colour, and as a cross betweer them brifgs these two complementary lactors together the \mathbb{F}_{h} plants moust all be red. As this case is of considerable
impertance for the proper undergtanding of minth that is to follow, and as it has been comptely workell out we shall consider it in some netail. Deroting these twa colair Actors by A and B reppectivaly we may preced to follow but the कonseguences of this crose, Since all the F_{j} plants were rad the constitution of the parcntal] whites must hare been $A A \delta$ and acBB ferpectively, and
 their gamates солsaquently A
 comstitution ct the F_{1} plaints must therefore, tue AbBE: Such a plant being heterogyrous For *ho 应ctors produese 2 50Jicg of gametres of the four kijds $4 B$, $A b_{1} A B$, mb, and produces them ith equal numbers (ef. pu 33) To obtain the rarious syper of gygotes which are produced when such a geries of pollert granta toesta a similar sertes of opuies we may make use of the same "ehessboand ${ }^{4}$ systenn whicth we have already adopted in the case of the fowle combs, An examination of this figure (Fig. 7) shows thet 9 out of the 16 squares contain both A and B, while 7 contata cither A or B alone, or nether. fin other wards, on this view of the nature of the two white swett-peas we shoufd in lum F_{2} gencration look for the apperatice of coloured and
phite flowerg jri the ratio g: 7 - And thas ag we have already seen, is what was acchally found by experment. Fuether wetmination of the fipure shows that the woloured plants ace not all of the same constitution, but are of four kinds with respect to their xyrgotic congtitution via $A A B B, A A B B_{1}$ $A A_{B} B_{\mathrm{n}}$ and $A A E$ Since AABE j homoxygous for both A and $E_{\text {, all }}$ the garmetes whish it proviuces magt contain both af these loctocs and such a plant oulust therefore breed true to the red coloure A plant of the constitution AABb is hamazygors for the factor A, but heteroxypous for

Fige, 7

 colvared F
B. All of its gametes will epntain A, but only oneThale of them will contain $B_{\text {, }}$ ten is produces equal numbers of tanetes $A B$ and $A B$. Two such escies of gametes coming together must give a generation

 the red zyrgotes of the constitation Arand have the same constitution as the original ped made from the two whites, and must pheretore when bed from give reds and whites in the ratio $9: 7$. The existersace
of all these titee spor of reds was demonstrated by experiment, and the propostions in which ther were met with tallied with the theoretical explanation.

The theory was further tested by an examination into the properties of the watious F_{3} whites which aome from a coloured plant that has itself boen produced by the mating on two whites As Fis. 7 shows, these are, in respect of their contitu
 $a \rightarrow B t_{\text {r }}$ and awds. Sinae none of them produce anything but whites on selferectilitation it was found neceessary to tegt their properties in another wayr and the method adopted was that of crosstag them ingether. It is obvous thate when this is done we should expect different readte in different cases. Thus the cross hetwen two whites of the constitution $A A B b$ and an $B E$ should give tothing bu* coloured plants ; for these two whiter are of the same constitution as the original two whites from which the experiment starled, On the other hand, the cross betwexin a white of the congtitution asbe and any wher whites can rewer give anything but whites. For no white contains both A and $B_{\text {a }}$ br it would not be white, and a plant of the cotsititution adot ctumbt suppily the womplentertary factor necessary for the production of-colawr. Agein, two whites of the constitution Aadd and atB a when crossed should give both colomed and white flowers, the latter being three times ats numeraus as the farmer, Wjithout geing into further detatl it may be stated that the results of a long series of crosses beterem the verions $F_{\text {, }}$ whites abouded closely with the theoretical explanation.

From the evidence afforded by mbid extaustive set of experiments it is impossible to resist the deduction that the uppearance of colour in the sweetpea deperids upon the hateraction of two factors which are independently trmbmitted according io the ondinary wheme of Mandelian inhertance. What these betors are js still an oper question. Recent culdence of a chemical nature indicates chat colour in a flower is due to the interaction of two dennitive substances ; (c) a colourless " chromogen, ${ }^{13}$ or colour lestis a and (2) a ferment which behtres an an activator of the chromogen, and by indueirg some process of oxidation, leade to the formation of a oblowred substance. But whether these twa bodies exist as such in the gametes, or whether in some other form we have an yet mo mears of decidiag

Sine the elucidation, of the nature of calour in the sweet-pea phenomgna of a similar krigd have been witnessed in other plants, notably in stoeses shapdragors and orthide Mor is this class of plienotherie confond to plants, It the courge of a scries of experiments upon the plumage colour of poultry incications wete cbtained that diferent white breods did not always owe their whiteness to the seme ceuse. Crosses wete acoordingly mide betaren the white Snlky fowl and a pure mhite strain derived from the white Dotking Eath of these had been prewdously shown to bohare as a simple recessive to colour. When the two were crossed anty fully colouret birds resulted, From analocy with the case of the spreet-pea it was anticipated that such F_{1} colonded birds when bea together would produce an F_{g} generation consisting
of coloured and white birds in the ratio $9: 7$, and when the experiment was made this was actually shown to be the cate. Fith the growth of linow]edge it is probable that further strikillis paralle[s of this nature betwen the plait and nimal worlds. will be met with.

Before quittirg the subject of these experiments attention may be demwn to the fact that the $9: 7$ ratio is in reality a $9: 3$: 3 : 1 ratio in which the Jast theee terms are indistingubhable owing to the special circumstances that reither diactor can produce a wisible cffect without the co-operation of the other. And we may futher emphasise the fact that althouth the twin factore thus interact upon one another thoy Fire nevertheless transanted quite independenty and int accordance with the ordinary Mendelian scherje.

One of the eathest gets of experments demonstrating the interaction of separate factor was that
 made by the French zoologis Cubnot on the coat colours of mice. It was showa that in certaili cases agouti, which is the colour of the qudinary wild grey mouse, belanes as a dominant to the albine variety; ies the $\mathrm{F}_{\text {a }}$ gencration from such a cross consigts of agoutis and albinos in the tatio 3" ; En Et if other cases the cross beween albino and aggoti gave a difterent result in the F_{1} generazion appeared only agoutis as before, but the F_{y} gencration consisted of three disunct types, viz
 apperanoe of the new typer The answer is in simple orye. The albino parent was realdy a beck But it lacked the facter without which the colour is ueable to develop, and consequently it remained an albito. If we derote this factor by 6 then the oonstitution of ath alnono must be σ_{i} while that of a coloured animat may be $C C$ or $C c$, according as to whether it Guends trwe to cobour or can throur albinos. Agouti uras previously knowt to be a simple dominant to beak, fee an agouti is a black rabbit ppus an additional greying factor whicin modifes the black into agouti. This factor we wid] dencte by G and we will use B for the black factor. Our grigital fgenti and albino parents we may therefore regand as in constitution $G G C G B B$ anc $g g_{0} B E$ uespectiwely. Both the parents are homozyous for black. The gametes produced by the tro parents are GuS and geN and the constitution of the F animals must be GOCOBS. Being heterarygous for two fectors they will produce foll kitide of gemetes irl equal numbers, viz. GCB, $G G, E C B$ and gra. The tesults of the mating of twa such similitr series of gametes whem the \mathbb{F}_{3} animals are bred together we may determine by the usual "chescboatd meethod (Fige 宫) Out of the 16 squares g contain both \& atul G in addition to B. Such animals must be agoutís. Thee squares contain C but not G. Such aumalls inast be coloured, but as thes de not contain the modifying agouti factor therr coleur will be black The remaining four aguares do not enotain $C_{\text {, and }}$ fri the absence of this colour-developing factor they most all be albinose Theory demands that the three classes
agouti，blazk，ancl albino shoulta appear in F_{i} in the tatio 9 －34 4 ；experiment fast shows that these ara the only classes chat appear，and that the propotipur in which they are produced acoord chacly with the 1．7eoretical ex－

CDE	C宁B？	CGE	CGE M
CGH	CSH	CG日	－${ }^{\text {E }}$
			为
Arpot	Semb	4；${ }^{\text {cin }}$	A
С¢ ${ }^{\text {B }}$	Cg P	C－日	CEB
CO	$\mathrm{Crg}_{\mathrm{g}}$	CGE	Esfor
－			CEAEW
CGE	cGE＇	GGI	cGB
CGD	С¢	GB	cEm
\therefore－pout	A		Albsino
¢8	EsB	Cs ${ }^{\text {B }}$	ceta
CHB	CFP	CHE	－ $\mathrm{C}_{5} \mathrm{H}$
Atil		Alyiza	Abiso

Fice

 pectation Put brictiv，then，the explamation of this case is that ard the animals areblatkenta that Wre are tealing with the presence and abgetice of two factors，a calous developer （ C ），and a colour moditier（ G ］，both sttifugr as it wete． upor asubstratam of black．The F generation really consist on the four chasen ageutis black，albino agoutis，ancis albiro blecks in the ratio 9：3：3：I．Wint since in the absenze of the colous deweloper $\&$ the colour modifici G an produce no visifice result，the last Ewo clatses of the ratio are indistinguishable，and our F_{g} generation comes to consige of three clazen in the natio 9：3：4，instead of four clasces in the ratio g＝3；3： 1 ．

This explanation was turthet tested by experi－ ments with the albinos．In an $F_{\text {a family of this }}$ neture the ought to be three kinds，wis albinas homozyous for $G(G G B B)$ albinos heterowgous
 These albinosare, as it weve, Etes photograbic plates. exposed but undeveloped. Their potentialities nimy be quite deberent, although they all look alike, but this can only betested by treatitig then with e colour derveloper, In the case of the mice arnd rathita the jotentiality for which we wish to test is the fresence or absence of the [actor G and jn arder to develop the calour we nust introtluge the factor 6 . Dur devcioger, therefore, must bontain t but not ir. In other wods, tit must be a hombzyedre blach mouse or rabbit, ggeches Since such an enimal is pare for C it must, when mated with any of the albinos produce only coloured offspreg , And shoce it docs not contain the appearance of agoutis emone its of fojring mugt he attributed to the preterice of G in the albino Jested in this way the F_{g} albinos were proved, ats was expected, to loc of thece kinds (r) those which gave on ly hgouti, tie which wope honoxygous for 5 : (2) thase which fate agoutis fand becks in approximetely equal, cambers, i.e which wete heteroxygous for G; and (3) those which gave only blackis, and theretote did tot contain G_{0}

Though albinos, whether mice, rabbits rats of other itnimala, beved true to albinism, and thould albinísuc belbades as a simple recessive to colour, yet
 in fact just as many kinds of alfinos as there ate colouted forms-neither mare nor less. Atld all these ditterent kinde of albinos mavy breca together, transmitting the warious bolour factots recording to the Mendelian scheme of interitance, and yet the wisible result will be nothing but albituos. Under
the mask of albinism is all the white occuring that gegregation of the different colour factors which would fesult thall the quatieties of coloured formen if only the esgental factor for colour developrent were present. But put in the eveveloper by crossing Whith a pure coloured form and their variety of comstitution can then at last bsome manifost,

So 应 we have dealt with chase in which the prodution of at chacter is dependent upon the interaction of two dactors But Bury be that some charactors require the simultaneous presence of a greater number of factors for their titatifestation, and the experimemts of Mifs Saunders have shown that Ehore is a character in stocks which is unable to appear cxoept through the interaction of three distinet factors. Coloured storke may be either hoary with the [eaves and stem covered by smali] hairs, or they may lack the hairy cotering, isi which Gase they are termed glabrous. Howiness is dominart to 恋labrousness ; that is to say, there is a definite factor which can turn the glabrous into a hoary plant when it is present But in families where coloured and white stoches occur the white are always glatrous, while the coloured plants may or may toot be hoary Now colous in the stock as in the sweet-pra has been proved to be dependent upos the interaction of two eppatate hactors Hence homines depends upon three separate factors, and at stock cannot be hoary uriless it contains the hoary factor in addition to the two colous factors. It requires the presence of all these three lactors to produce the boary character, though hew this comes about we have not at pregent the least idea

A somewhat diferent and legs usual bom of inter－ action betwecn factors may be illustrated by a eate in primulas recently worked aut by Dateson and Grespary Like Ethe cotmmon primurose，the primula exhibits both pin－eyed and thrumeyed variedes In the former the styife is long，and the centre of the eye is formed by the end of the stigma which mice
 g．Ay；in the batter the style is short and hidden by

刃丁口．

 ＝pin！＂ber with wa：
the［our anthere which spring from higher up in the corolla and Borm the centre of the cye（cf．Fig－g，B） The greater part of the＂eye＂is rometi by the gromish－ycllow patches on cach petal just at the opeming of the corolla．In most．Primulas the eye is small，but there are sorte in which it is larpe and extends as in fugh ower a considerable pat of the petals（Fige no）Experiments showed that these two pairs of characters behave in sample Men－
 to lony style $\left(=^{\text {＂}}\right.$ pin $\left.{ }^{\prime \prime}\right)$ and small eye dominant to
[arge Besides the normal lemg and short styped forms, there occurs a third form, which has bern termed honostyle In this form the anthers are plabed low down in the corblla tube ats they are in the longerglyed form, but the stric remands "start instead of teaching up to the corolla opening "Fig 9. O). In the counse of their expefimentr Bateson

Fゴ: - =

and Gregory conged a lafge-ryed homostyle pliat with a small-eyed thruth ($=$ shot style) The \mathbb{F}_{1} plantes were all short syfled with gonall eyos Or self-Fertilisation thege gave an $F_{\text {g generation congist }-~}^{\text {gen }}$ ing of four typed, wid ghort styted with small eyes, short styled with large eyer, done sithed writh small eyes, and hawothed with large erta. The motable feature of this gerseation is the appocance of longstyled plants, which, bowewer, bechi onfy in rasociation with the small rye The jroportions in which these four typen appored shows that the preseme or abserice of but two lactors is concorned, and at
the same time provides the key to the gatare of the homostyled pants These are potentially long styled, and the position of the anthers is the of nomal long: styled plants, but owing to some interaction betwern the factors the style juself is wable to reach its futl development unless the factor for the amall eye is present. For this reacon long-styled plants with

Statstyle shartstyle Larestyle Hoalastyle

名
(3)
(3)
(I)
the large eye ete alway of the lhomostyle form What the encinecting link between these apparently ufrolated sturtures may be we cangot yct picture to ondselves, any more than we can picture the relation between fover colour and juminess in stodks. It is erident, however, that the conception of the inter action of factors, besides clearing up much that is paradoxical in heredity, promises to findicete lines of research which may land to saluabe extersions in on krowledge of the way in which the warimes parts of the laving argander are related to one another.

CHAPTER VI

NETEESION

As sooil as the idea was grasped that chathcters in plants and anjuale might be due to the interaction of complementary factortan it became evident that this threw clear light upon the hitherto paraling pheriomenen of revergion, We hawe alteady seen that in cortain cases the cros betwoen a black mouse or rabbit and an albine, ath belonging to true breeding strains, 比盀ht produce nothing but apoutit. In other words, the cross between the black and the white in certain instantes results in a complete revergion to tlie wild grefr form, Expresed in Mendelidn terms, the production of the agoutil mas the necessary conscquence of the meeting of the factors C and G in the same zygote As seon as they are brought together, no matter in what way, the reversion is bound to occut. Reversion, therefore in such cases we may regard as the bringing together of complementary fictors which had somehow in the course of ewolution become septrated from one another, In the simplest cases, subh as that of the blach and the white rabbit, only two factors ane concerned, and one of them is bougint in frome each of the two parents. But in

リーッド

other ases the nature of the rewersibr may be more cotripleated owing to ar larger number of factors bang concernen, thoush the general principle rematin the same Caretul breedieg Erom the rewersiotis will enable us in each case to determime the rumber and mature of the ractors womerned, and in illustration of this we jugy take another example from rabbets. The Mimalayan rabbit is a well-knowri breed. In apperane it is a white fabbit with pirk esecs, but the ears, pawn, and nose are black ("PI. I, 2). The Dubch rabbit is anther well-known bred. Genemily spaking, the anterior portion of the bory is whiter and the posterior part colpured. Anteriorly, hont ewer, the gyes are surmunded by coloured patches extending up to the ears, which are entirely coloured. At atec same time the hird pawa are white fci. Pl, in, r) Dutch rabbite ceist in may varicties of colour, though ja each one of these the bistribution of colour atid white showe the same relatione. In the experments about to be deseribed a yellow Dutch rabbit was crossed with a J Jimalaya, The result was a reversion to the wild agouti colour (EL I_{4} 3) Some of the F_{1} individuals showed White patches, while others wroe self-colourd. On brecting from the F_{1} animals a saties of cotomed forms resulted in F_{g} These were soutis, blates yellows, and sooty yellows, the se-alled tortorscsbelis of the fancy (PL $I_{4} 4-7$). In andition to ghege appeared Himalayan watle either blacts poinds or with lighter brownish ones, and the propartions in which ehey cund thowed the Himalayan character to be a simple recessive. A certails mumber of the coloured Jarms exhithted the Dutch marking to a
greater or jess extent but as its jinheritanice in this set of experiments is momplicated and has not yet been worked qut, we may for the present negect it and confine ouf attention th the coloned sypes and to the Himalayats. The proportion in which the four colowred types appeared in F_{3} was very nedrly 9 agoutis, blacks, 3 yrellows, and a wortoseshell, Eridently we are here dealing whiln two factors: (I) the grey farior (G) which modifies black into agouti, or tortwiseshell into ycllow; and (z) an intensifyitg factar (A) which intersifer yollow into agouti and

tortoiseshell into black. It may be mentioned bere thet other experiments contirned the wew that the yrellow rabbit is a dilute apouti, and the tortoteshell a dilute black: The Himaleyan pattern behawe ins a recessive to self-colour. It is a solle-coloured black tabbit lacking fi betor that allows the olour to develop except it the points. That factor we may denote by X_{1} and as far as it is concerned the Himalayen is censtitutionally ax. The Himalavan tontains the jatensitying factor, for such pugment as it possesses in the points $\overline{0}$ [知] colpured. At the satue time it is black, i, lekling in the fortor Ga With regrard to these three [actors, rherelore, the constitution of the Himaiayan is geidat The last chat -
acter which wre have to consider hin this cross is the Ducts character. This was found by Hurst to behave as a reccsaiw to selfocolour (Sh, and for out present purpose we will regard it at difering $\sqrt{\text { rom }}$ a self-colouted rabbit int the Jace of this factor- ${ }^{1}$ The Himalayan is really a self-coleured animal, which, howerer, ts unable to shour itself as a fall biack onting to its not possessing the foctor A. The results of beeding experiments ether surgest thet we may denate the Himalayan by the fomula gr/ixuss mod the yellow Duten by GGifYBS5 Euch Jacks two of the factors upon the bull complement of which the arputi solour depends. By crossing them the oomplete geries $G / X 5$ 號 brovgh into, the rame zyote, and the result is a feversion to the colour of the willd rabbit

Most of the instances of reversion yet worked out are those in whith colour tharacters are concerned. The swote -pea, however, \quad eupplies its with a goond example of Eversion in giructural chinrecers. A durar" ratiety known as the "Cupid" bas bets extensively the internades are mery short and the stems ate few in number, and attain to a lengeth of only 9 -10 inclues. In course of growth they diverge fom ane another and come to lie prostrate on the ground (F . II, 2). Curicusly enough, elthough the whole piame is dwarted in other rerpects, this does not sem to ahent the size of the flower, which is that of a nomal swert-pea. Another though les5-known wariety is the " Whash" wwent-pea, Its hame is deriwed from

[^1]its habit of growth. The numerous stems do not diverge from one another, but atj grow up side by. side giving the plant the appearanes of a compact busk ($\left.\Psi_{1}, 11,9\right)$. Under oudinary condetions it atteins if heirght of $3 \frac{1}{2}-1$ feet. A ruthber of crosses were made between the Bush and Cupid varietios, with the somexhat sncxpected result that in every instance the \mathbb{F}_{3} plants showed omplete reversion to the size and babit of the ordinary taill swetper (PI, IL., 3), which is the form of the will plant as it ocerter in stichy to-day, the F, generation from

these revershonary tall ronsitted of tour different types, riz talls, bushes, Cupids of the procumbient type like the ofiginal Cupid parent, and Cupids with the compact upuight Bush babt (F]. II., 4) Thes four types appeared in the ratio $9: 3 \pm 3=I_{n}$ and thit, of course provided the elue to the nature of the chase The characters concrmed are (i) long internade of stem beiweed the leaves which is domunat to short intermoder and (2) the creeping procumbent habit whict is domsuant to the crect bush-like habite Of these chatactera lentioth of internode was carried by the Bush, and the procumbent hasie by the oreginall Cupid parent. Tho bringing of theris together by the cross resulted iti a pro-

cumbent plaul with long internodes. This is the ordinary tall sweet-pea of the wild Sicilian type, reverion here, again, being due to the britiging together of two complementary factors which had sonehww bocomescparated in the course or evolution.

To this interpretation it may be objected that the ordinary swest-pea is a plint of upright habit This, however, is not truc. It only appears so becalsog the conventional widy of growing it is to train it ipy sticks. In reality it is of procumbent habit, with divergent stems like the ordinary Cupid, a fact which can cesily be observed by any one who will watch them grow without the attificial and of prepated supports.

The cases of reversion with which wr have 50 far dealt have ibeen cases in which the reversion oechats as an mmediate tesult of a cross, fis in the F_{y} generation. This is perhaps the commonest mode of rewersion, but instances ate knowa in which the reversion that occurs when two pure bypes are crossed does not appar until the F_{3} generation. Such a casc we have already met with int the dowls' corimas. It will be temembersd that the crogs between pure pea and pure rose gave walnut combs in F_{p} while in the F_{n} gentrextion a defintite proportion, I in 55 , of single combs appeared (cil. p. 30). Now the single comb is the form that is found in the wild juugle fowt, which is generally regarded as the ancestor of the domestic breeds. If lidis is so, we have a case of reversion in F_{2}; and this in the abrame of the two factors brought together by the rose-comb and pea-conth parcnts. Instead of the reversion being due to the
byinging together of two complementary fuctors, we must regard it here as due to the associntion of two complomentary absences. "Jo thete question, bow ever, we shall rewert later in disenssing the origin of donesticated warieties.

Thene is poe other instance of reversion to which

WE must allude This is Darwin"s famous case of the encasional apfeatance of pigeons rewerting to
 duraestionted races are crossed Egether $A \operatorname{ig}$ well known, Daterin totade uge of this ag atil

argament for regarding all the domesticnted varieties as having atisen from the same widd spectes. The original experiment is somewhat complicated, and is shonm in the aocomparying schemer Essentially

[^2]It lay in kollowing the results flowing from crosges betwoen black ent whites Enperjinents recently made fy Staples-Browne have shown that thas case of revergion also can be readily interpicted in Nandelian teras iln these experiments the cross was made betwect black barbs and white fantalle. The F_{1} binds werce all black with some olute aplashes, epidentily fuc to a separate factor introm duced by the farttail. On breeding these black to to gether they gate an Fy qeneration, consistage olblack (with or Without white splashes), blues (with or without whitc splashes): and whites in the ration 9:374. Theiactors concermed are colour (Q) is the absence of which

Fric
 sig口

a bird is white, and at black matifer (B), in me atsence of which a coloured bird is bluc The aricinal black barbeontaned both of these Factors, being in constitution $C C B B$, The fantail, however, oontained reither and was entseitutiopsily revb, The \dot{F}_{1} birds produced by crobsing were in constitution $C 4 B b$, and being hercrozygers for twe fectors produced in equal nutimbers the four sorts of qametes $G B, G B, G B$, ,

The resulte of two such serics of gameres bring brought together are shown in the usual way in Fig． If．A bite it a bird obnteinireg the colour factor but lacking the black modificr，ite of the constitution CCbs of Gd，and such birds as the figure shows appear in the F_{g} generation on the aperage threc times out of sixtern，Reversion here comes about in F_{y} when the redistribution of the factors leads to the tormation of rygotes containing one of the two factors but not the other．

In the casse which we have hicherto considered the Firesence of ar factor produces its tull effect whether it is introduced by both of the gametes which go to form the zugates, or by one of them alone. The heterozygous tell pea, or the heteroygous yasecombed fowl cannot he distinguished Jrom the homozygrus form by mere jngpotion, however closen Breding testr alone can decide which is the heteroxygone and which the homorygolds form, Though thes is true for the majarity of chardectets yet inpestigated, theme are cases known in which the beterozygous form differs in eppearinie from cither parcnt. Among plants such a case fas been met with in the primula. The ordinaty Cbinese pimula
 much crenated it the edges, In the Star Prmula (P, stimata) the flowers afe much smaller, while the petals are flat and present only a terminal notch instead of the humerous arcnations of P, rinemitu The hetcrozgete produced by arassing these forms is intermediate in size and appeatance. When self= fertilised such filants bathave in simple Mendelian
fashon, giving a generation consisting of sthensin. intermediates, and sterdata in the ratio I:2:1. Sobskucat breeding from thege plants showed that both the rithensts and sialdat which appared in the F_{g} generation lued trus, white the intermediates

Fixf te

always gave all thre froms again in the same propertion. But though there is no dominance of the character of either parent in such a case as this the Mendelian primeiple of 5egregation could hardyr have a better bitustration.

Among birdsa case of simblar mature the the of the Blue Andalusian towl. Fanciers hawe long
recognised the difuculty of getting this wariety tor breed true Of a slaty blue colgut itseff with derker beotctes and with black latimite on the

foathers of the breact, ir always fhraxe "wasters " of two kinds, viz blacks, and whites splaghed with horck Carcful breoting Erom the blues shows abat the three sorts ate always produced in the same

delinite propertions, wiz one black, two blues, one spiacher wite This at ontee sugetats thet the black and the spleshed white are the two lhomorygors forms, and that the blucs are heteraygous, for
jroincing equal numbers of " black " and " whate splashed" gametes The view was tested by breed. ing the "wraters " together-black with black and splashed white with oplashed white-and it was fount that each bred trase to ith respective type But when the black and the spladied white were cossed they gave, its was expected, joothing but bluce In other words, we have the soming paradow of the black and the splashed white producing twice as rimy blucs as do the blues when bred togetere The black and the eplathod white "wasters" are ith raylity the pure breeds, while the "pere " Blue Andalusian Es a monefel which no atmount of selec. titon will ever be able to ju

In such cases ns this it is olvrious thet we cannot speak of daminatee And with the disapparatice of this phenomenon we lose one criterion for determining which of the two jarent forms possesses the additional bactor Ate we, bor example, to regard the black Andalusian as a splashed white to which hase been added a fouble doge of a colour-intencijfring factor, or are we to eonsider the white splashed bird as a black which is emable to show its true pigmentation owitg to the posecsion of some inhebiting factor which provent the mantiostation of the black Eithor interpretation fits the facts equally wells, and uncil further experimene have bean devised and cartied out it is not possible to decide which th the carrect wies,

Besidts these comparativaly rare cases where the hetarozygote cannot be seid to bear a closer regemplance to one parent more than to the other, there are cases in which it is atten possible to draw
a wisible distinction between the hoterazygote and the pure domillant. There are certain white biteds of poultry, notalaly the White Leghorn, 法 which the white behaves as a dipminant to colourn But the heteroxygous whites made by crossing the domisint white birds with a pure bolloured form (sach as the Brown Laghorm; almost inwaziably show a Eew coloured Eeathery or "ticks" in their plumage The dominance of white is not quite complete, and renders it possible to distinguish the pure from the impure dominant without recourse to breading experiments.

This case of the dominant white fow opens up another interesting profem int contention with dominance. Byacceptity the Presence and Absence hypothesis we are committed to the wiew that the dowinht form P ossesses an cxtra fantor as compared with the recessive The rateral way of Jookinis at this case of the fowl is to iegart white as the absence of coloul. But were this so, colour should be dominant to white, which is not the case. We arc therefore forced to suppose that the absence of colour in this instance is due to the pretence of a factor whose property is to inhibit the production of colour in what would otherwise be a plire coloured bitd. On this wiew the dominant white fowl is a coloured bird plus a dactor which inhibits the deyelopment of the colous. The wiew can be put to the test of experiment We have already seen that there are other white fowls in which white is recessive to eolour, and that the whiteness of such birds is due to the fact that thcy tack a factor for the development of colour. If we denote this fectot by C and our postulated inhibitor factor in the domenarst
white bird by f ，then we must write the constiturion of the recesive white ase wit and the dominent white na GCTS．We may now work out the results we ourgh to obtath when a cross is made betheen these two pure white breeds The econtitution of the F_{4} bird must be CeIf．Such birds being heteroxygons for the inhibitor factor，should be whites showing
 both of the two dactors C and S_{3} they will produce in equal numbers the rout different sottr of gametes
 similar serjes of ganetes together is thown in Fig． I 3 －Qet of the sixten squarcs，twelwe contain \mathcal{A}_{F} these will be white birdsether wath or without ${ }^{\text {a }}$ Lev eolowred ticks．

Cl	Cl	$\underset{C I}{C I}$	$\underset{c i}{C l}$
$\stackrel{\mathrm{Cl}}{\mathrm{Cl}}$	$\mathrm{Ci}_{\mathrm{Cl}}$	c	
$\underset{C I}{C I}$	cI	$\begin{aligned} & 6 I \\ & \kappa I \end{aligned}$	㨐
${ }_{\text {cir }}$	Ci	$\frac{\mathrm{di}}{4, \mathrm{I}}$	$\begin{aligned} & \mathrm{ci} \\ & \stackrel{\mathrm{ci}}{\mathrm{i}} \end{aligned}$

F的 19.

 There contain L^{2} but not T ；these hust be beloured birds．O刀e can－ tatne reither C nor J ：this must be a white．From such a mating we oughe， theretore，to obtain both white and colloured birds in the ratio I j ； 3 The requlte thus theoretically de－ duced were found to accerd whith the actual facts of experiment．The F_{1} binds were all ${ }^{4}$ ticked＂whites，and th the F_{z} generation came white
athit coloured binds in the expected ratio. There seem 5 , therefore, litele reason to doubt thet the dominamt white is a coloured bitd in whelh the absence of colour is due to the ation of a colonrainhibiting factor, though as to the reature of that factor we can

Fiter
 nis that bended
at present make no sumise it is prabable that other facts, which at firgt saftit do hot npperar to be jut agrement with the "Presence and Abserve " hypothesis, wid eventually be brought iato liue through the uction of inlibitor factors Such a

Citse, for instance, is that of bearded and beardlegs wheata, Though the bean is ohriousiy the edditional character, the boarded concition js recessite to the beardess. Probably we cught to regerd the bearcless as a bearded wheat in which there is and inhibitor that stops the beard from growing- It is not unlikelly that as tirne gocg on we shall find maty more such caser of the action of inlubitor Eactors, and we mast be prepared to find that the same visible effect may be produced either by the addition ar by the ondission of a factor. The dominant and eccessive white poultry are indistinguishable in appertance yep the one contains a fector move and the other a factor leas than the coloured bird.
A. phenomenor sometims termed iregularity of dominance has been investygated ini fil few cases. In certain breeds of poultry such as Dorkinga there oocurs an extra to directed backwards like the hallox (ci. Fig. 15). In some families this character behawes as an orcinary dominent to the normaj, giving the expected 3 a 1 ratio $i t l F_{g}$ But in other framilies simitarly beed the proportions of birds with and without the extra toe appor to be umusual. It has Enen shown that in guet a damily some of the birds without the extra to may mentheless Erantimit the peculatrity when mated with birds belompitag to stains in whith the extre toe never occurs. Thongh the cxternal appearance of the bind genernly a anoeds some indicstion of the nature of the gametes which it is carrying, this is not always the case. Newertheless we have peason to suppose that the character segregates in the gametes, though the nature of these cartot
ahays be decided liom the appearance of the bird which bears them．

There ne cases in which a apparent atrogulanty of domithance has been shown to depend upom another character，${ }^{3}$ s in the experments with slwep calried out by Proressof Wood，in these experi－ metits tro breds were coossed，of whith ane，the Dorset，is homed in both sexes，whilice tiop other the Suffolk，is withoul bors in either sex．Whicllo

下丁口．T5

ever way the cross was atdde the esulting F_{1} generation wes sirmilat；the rams were hoinch，and the ewes were hamees Ju the F generation mated from these F_{1} enimels both horned and formilesk types appeared in both sexes bist fil wesy afferent pro－ portions．While the horeed rams were about three times and numaus as the horness，this relation what reversed among the ferosles，in which the hooned formber only about one－quarer of the total．The simolest explanation of this jnterestinf case is to
suppose that the dominange of the horned etraracter dipend upon the gex of the arrimal-that it is domitant in the male, but recessive the fernale, A prety experament was devised lion pu*ting thit triaw to the test If it in true, equal mumbers of granetes with and without the honned factor must be produced by the F, ewes, while the factor should be hacking itn fal] the gameter of the harnless Fa fams A hornleg mant

F岓

therefors, put to a flock of F_{1} ewes shoutd give rige to equal numberg of aygotes whjch aje heterozygous for the hornet character, ud of zygotes in which it is complenely ubsent. And since sle heterozyeors miler are tortien, whit the luetrozygons females are hornless, we should expect from thet mating equal numbers of horned dad hornless rams, but;only horbless ewes The result of the experiment ronfirned this expectation. Of the totn lembs of we homed and 宫 were homless, while all the if swe lambs were completely detitute of homs

J. Bomed litn Limits

CHAPTER VIII

WRLD FORME AKT POMTSTIC VARIETIES

IN alismesitig the phenomena of reversion we hawe seen that in most cascs such reversion octirs when the two yarictics whieh are crosed each contain certain factorn leckeng in the ather i_{i} of which the full complement la mecesary for the production of the rewersionary wild form. Ihis at otive sugheste the idea that the whibes domestic forms of animals and plants lave arisen by the omission from time to time of this factor or of that In some atses we have clear evidence that this is the most: natural interpertation of the relation betwent the cultivated and the wild forme Probably the sperics in which it is most evident is the swect-per L whitywa odorathe We heve already sen reaspin to suppoke that as regards certain structural teatures the Bush waricty is a wild latring the factor for the procumbent habit, that the Cupid is a widd without: the fattor for the lorg internode and that the Bush Cupid is an wild mines forth there fators. Nor is the cridence leas clear for the manyr colour watietics lis illustration we may consider in more detail a case in which the cross between two whites
restulted in at complete reversion to the purple oolour
 ctris particular justance subsequent breeding from the purples resulted in the production of six difterent colour bome in addition to whiter. The proportion of the colbuted forims to the whites was $9: 7$ (ch. P. 4 ty but hat with the relation of the six: coloured rorms that we are eancerred here Of these six torms, thee were parples and three ware reds, The three pulfile forthis were (i) the witd bicolor purple witb blue wings knows in cultivation

 dilute pupple known as the Phoote (PI. IV., 6)- Cor" responding to thoge thee purple forms were thred reds:
 (2) a deep red with red wings known as Miss Hurt (P] I $\mathrm{V}_{4}, 8$) ; and (3) E very pale red which we bate
 generation the total mumber of purples bore to the total ulumber of reds the ratio $\mathrm{z}_{\mathrm{z}} \mathrm{i} 1$, and this ratio was manatained for each of the cotrepporditig clasers. Porple therefore, is dominant to red, ante each of the three clases of ted ciffert from itg oorresponding purple jo not p-asessing the blue factor (E) which turts it into purpic. Again, the prepertion in which the three clases of purples appeared was 9 bicolors 3 dep purples, 4 picotesers. We are, therefore, Eni" cerned here wath the operation of two tactors: (c) a light wing fictor, which sencers the bicolor

dominant to the darte winged form; and (z) a festor for intense colour, which accurs in the bicolno enod in the deep purple, but is lacking in the ciflute picoter And liexe it should be inentioned that these conclusions rest upon an exhaustive gat of experiments involving the breeding of many thousands of plantita In this cross, thacelore, we wre concerned with the presence or absence of five factors, which we may denote as Follows:-
A colaur base, A
A colour developer, Cr
A purple factor, ${ }^{\text {Hen }}$
A light wing foctor, 2
A foctor for manse acolous, A

On this notation pur six coloured forns are:-

It will be fotiod io this series that the various colouted forths can be expressed by the omission of one or mone factors from the purpile bigotor of the wild type. With the complete omission of eath factor m new colotd type resulta, and it is difficult to resist the inference that the various cultivated forms of the swer-pen have atiser from the mild by gome procese of this kind. Such a wiew tallies with what we lomo oi the behaviour of the wild

[^3]form when crossed by any of the gatchen warieties Wherever such crossitg hats ben made the form ol the heforid has been that of the wild, thas supporting the wiew that the wild contains a complete get of all the diflerentiating factors which are to be found the the 5wcet-pel.

Morcover, this wiew is in hasmony with guch bistorical cuidence as is to be gleaned from bataniced Literature, and from old geedsmen's catalogues. The wild swet-piea first reached thes oountry in 1699, Whwing been sent from Sicily by the montik Francitaus Cupani as a present to a certain Dr. Uvedale in the county of Middicsex Somewhat later we hear of two new rarjeties, the red bicolori or Panted Lady, athd the white cach of which miny tre regarded as having "sjotted" from the wild purple by che omission of the purple factor, of of one of the two colout factores. In 1793 we find a seedsman offering also what be called black and scarlet warieties. It is probable that these were our deep purple and tutas Hunt warietfes, and that somewhere about this time the factor for the light wing (L) was dropped out in certain platit. Ia 1 S60 we have evedence that the pale purple of Piooter, and wath it doubtoss the Tinged White, had come into existence. This time it was the factor for interise colour which had dropped out. Abad so the story geos on until the present day, and it is row possible to exprese by the same simple method the relotion of the modern shades, of purples and reds, of blues and pinks, of hooded and wray standatds, to one another and to the orgersel wild form. The constitution of many of there has now beeth worked out, and to-diy 少
would be a simple thougt perliaps tedjous task to denote all the different vanieties by a scries of letters indicating the factore which they containt insted of by the present system of callitig them after kings and quene, and damous generals, and ladies mope of less well known.

From what we know of the history of the various strains of sweet-pens one thing stands out clearly. The new cherater doce not arise from epre-cxisting waliety by any process of gradual sclection, constious or otherwise. Is turn up sudderily complete in itself, and thereafter it can be associated by crossing with other existing characters to produce a gamut of rew varietics, Hf, for example, the character of hooding in the standard (cf. PIL IL, 7) suddenly eurned up in such a family as that shown on Plate IV, we should be able to get a hooded ton cofresponding to exach of the forms with the erect standard; in other words, the artiwal of the new form would give us the possibility of fourteen watieties instead of sevenn $A s$ we know, the hooder charatter already exists It is recessive to the erect standard, and we have teason to supprose that it arose as a sudden sport by the onnession of the factor in whose presente the standard assumes the erect shape characteristic of the wild flower. It is largely by kecping his cyes ppen and seizing upon such sportg for crossing purposes that the horticulturist "inproves" the plante with which he deals How these sparts or mutations come about we can now surmise. They fust owe their origit to a disturbance in the promesses of cell division through which the pametes originate. At some stage or
other the normal equal distribution or the veriots faotore is upset，and same of the grometes receive a factor less that others．From the urion of two such gameter，prowider that they arre still capable of fertiljeation，pormes the zygete which in course of growth derelope the new character．

Why these mutations arige ；what leads to the surmised uncqual diwision of the gametes of this we know practically nothing．Nor until we can induce the production of mutationg at wall mee we likely to undersath the conditions which sowern their formation．Nevertheless there are already hirte scattered about the recent literatute of expieri－ mental biclogy which lear us to hope that we may know more of these matters in the juture．

In respers of the evoluion of its now multi－ turinous warieties，the story of the sweek－pea js clear and sitaightforward．These have all arisen from the wild by at process of continuods loss， Ererything was there in the beginuing，and as the wild phint parted with factor after factor there camin into being the long series of dariwed forms，Exquisite as are the realts of civiliotion，it is by the degoda－ tion of the wild that they have been brought about How Gar ave we jusiticd in regerding this as e pictufe of the manaer in wheh evolntion work if

There are certaitly other species in which we must suppose that this is tine way that the trerious dompaticated forms have arisen．Such for example， is the case ith the rabbit，whers most of the colour warieties ane recesslue to the wild agouti form．Such． alm is the ease in the rat，where the biacile and albino waticties and the various pattern forms are also reces－
sive to the wild agonti type. Ancl with the expeption of an certain yellow variety to whith we shall refer later, such is also the case with the many fancy warietice of mice

Neresthcless there are other chases in which we must suppose evolution to bave proceeded by the interpolation of characters, In discussing reversion on crossing, we have already sen that this may not occar until the $F_{\text {a }}$ generation, as, for example, in the instanee of the fowls' combs (ip. P. 5g). The reversion to the single comb pecurfed as she result of the removal of the two fators for rose and pea. Thene two dommaticeted varieties must be regarded as edeh possessing atil sdditional factor in comparison with the wild single-combed bied. During the evolution of the fowe, these two factors nust be conceived of as hapying ben interpolated in some ways. And the same bolds goot for the inhibitory factor on which, as we have seen, the dominank white character of certain poultry depends In pigeons, too, if we regard the blue rock as the encestor of the domesticated breeds, we must suppose that an additional melanic factor has arisen at som stage. For we have already seeti that black is dominant to blue, and the chatacters of F_{1}, tugether with the greater number of blacks than blues in F_{y}, negativen the possibility that we are here dealing with an inlibitury factor. The horniess of polled eondition of cattle, again, is dominant to the horned condition, and tif, as seems rasonable, we regard the original ancerstors of domestic cattle as having been horned, we have here acain the interpolation of an inhibitory fector somewhere in the coltrse of evolution.

On the whole, therefore, wc must be prepared to edmit that the erolution of somestic variction moy oose about by a process of addition of haccors in sonne cases and of subtraction in others. It may be thet what we tern addetional factore fall into distinct categones from the retse So fat, experinent getms to show that they are either of the nature of melanic factore, of of inhibitors factors or of reduphication tuctors as in the case of the fowls" combes But while the data remaiti go scanty, speculation in these mattore is too hurardous to be profiteble

CHAPTER IX

RTFITALDM AMD COLFLTXG OF FAGIORS

 produce specifie sendelts in the zygote throwg their jnteraction, yet in all the cases we luave litherto considered the havity of cach of the different factors is entirely indepmotert. 1 lie interaction of the factors aftects the characters of the sygotc, but makes no diference to the distribetion of the separate fectors, which is alpoys if serict acoordance with the ordinary Mendeliani geherne Each factor in this respect befaver ats though the other were not prosent:

A Eow cascs have becn worked out in which the distribution of the diderent factore to the gatactes is afected by wheir sirtidtancous presenge in the zygote. And the influence which they are able to exert upon one another in suche cases is of two kiuds. They may repel orte mother, renusigg, as it were, to enter into the gente zryote, or they may ateract oajo another; and, becoming linked togethers Josi into the same gameter as it were, by preferente. For the moment we nuy consider these twe sets of pheno-

Once of the best illustrations of repulston between fectors octurs in the sweet-pet. We have nlagaty seen that the logs of the blue or phrple ractor (B) Erom the wild bionor results in the formation of the red bixolor kthon as Painted Lady (PL. IV., 7 ') Further, we bave seen that the hooted athatard is recesine to the ordinary ercot standard. The omission of the factor for the efect standard (E) flom the purple bicolor (Pl. II_{n}, j^{2}) risults in a hooded purple known as Dufe aif Westminster (PL II $_{1}, 7$ A A h here it should be montioned that in the cotrosponding haoded fome the difference in colour betwren the wings and stancand if not nemity so marled as in the forms urich the erect standerd, but the difference in struture appears to affect the colour, which beoomes ncarly uniform, "this may be readily seen by comparing the picture of the purple bicalor on Plate [I, with chat of the Dute of Westeninster flower.

Now when a Duke of Westminster is mated whon a) Painted Lady the factor for crect standard (E) Es brought in by the red, and klint for blue (B) by the Duke, and the offspring are conteguently ald purple bicolor. leurpleg so formed, are all heterotygous for theqe two factore, find wete the case a simple owes such as thoge wholh have wiluedy begn discussed, we should expert the F_{z} generation to oonsist of the tour forms erect purpte, hooded puple, erect réd, thed howed red in the retio g:3:3: I Such, how*rer is not the cosc. The F_{g} gerveration actually wonsists of only threc forma, wiz. erect red, erect purple, and booded purplep and the ratio in which these three forms occur is I: 2; I No hooded red
has been kroprn to oceur jon such a family Moreover, further breeding' shopas that while the encect rede and the hooded poriplea always breed :rue, the erect purgles in such 数milies mewer breed true but

ajwats behave like the orighal F_{j} plant, giving the three Foms again in the ratio i: 2ti. Wet we know that there is no difficulty ho geting purple bioolors to breed true from other families; and we know also that hooded red sweetheres cxist in other stra"me

On the assumption thet there cxists at repulsion between the factorg for enect standard and blue jn a plant which is keterozrgous for both, this peculiae case regeives a simple explanation. The constitutions of the erect red atid the hooced purple are EEBF and eajg respentively, and that of the F_{1} erect plople is EeBb. Now let us suppose that in sach a rygate titere exists a repulson between E and B. such that when the plank forms gametes these two Eactors will not go into the same gamete Dr this wiew it can ouly torn two kinds of gameter, vilu $E \beta$ and $2 A^{\text {, }}$, and these, of oourse, will be formed in equad numbers Such a plant on self-fertitisation nust

I erect fed, 2 ercet purples, and i hooded purple. And bectuse the erect reds aild the hooded purples are respectively bomoxypous for E and B, they must thenceforward bred true The enect purples, or the other hatul, beitug always formed by the unton of a gamete Eb with a gamete $R B_{1}$ are always heterazpgous for both of these factors. They gan, monsequently, newtr broed arue, but must always dive ereet reds, eect purples, and booded purples in the

ration $3: \pm \pm$. The expermental facts ate readily explained on the assumption of fepulsion betwon the two lictors S and E during the formation of the ganetes in a plant which is heteroyggous tor both.

Other sintax cabeg of lactofiah rapision bave beer demonstrated in the swethen, and two of these ate atgo conccrned with the two factors with which we have just ben dealing. Two djstinct warieties of pollert Frans owelu in this species, wiz. the ordinery obloury form atid a rather smaller roluded gean. The former is dominant to the
latter ${ }^{1}$ When a choss is made betwen a parpla whth round pollen and a red with long pollem the F_{a} plant is a long pollened purple. But the Fy geremation consista of purples with round pollen, purples with loag pollesi, and reds with long pollen in the ratio $1: 2: 1$. No red with round pollen appcars in lo quring to rapulsion betwent the factors
 plante produond by ciosping a red hooded long with a sed romal bawing an erect standard sive in F_{j} Jong pollemed reds with an erect shindand, and these in F_{g} produce the three types round follened erect, hong pollened erect, and long pailaned hooded in the ratio $\mathrm{t}=2: \mathrm{T}$. The sepilsion hate is betwem the long pollen factor (L) and the factor for the erect standiard (is)

Yet another similar che is known in whinh we fot corionted with quite wiferent factors. Jti gomer sweet-gens the axils whence the leaves and fower. stalles sprinter from the mein stem are of a deep red colous. In others they are greeth. The dark pigmented axil is dominart to the light onc. Again, in some awet-pent the anthers are sterile, selting a poilen, and this condition is recessive to the ordinary fertile condition. When it sterile pilant with a dask exil is crossed by a fertile plath with a light axil, the F_{n} plants are atl fertile, with dark awile But surf plande ict F^{-1} Elve fortles with faght axils, fertiles with dark axils, and steriles with dark axils in the ratio 1:2: 1 . No light avilled steriles appar fom

 bucur welher an the same papl
guch a arose owitg to the repulsion between the factor dop dark axil (P) and that for the Iertile anther（ F ，

These four enses bave already been found in the swet－pea，and similar phenomena have been met with ly Gregory in pritalas．To certaitt seemingly analogrus wes in anmals where sex is comoerned we shall refer later．

Now all of thege fout cases present a common feature which probably has not escaped tae attention of the reader．In all of them the ertgival amss
 with whe of the two porents．If we denote ost two tactors by A and B ，the cossew have always been of the nature $A A b x a \cos A$ ．Let us tiow considet whate happens when boin of the tactors which in these casa repel one another，are introduced by ane of the parents，and neither by the other parent And in partionlar we will take the cabe in which we are coinesned with purple and red flower colowr， and with long and round pollen，tied with the factors B and L When a purple lang（ $B E L E$ ）is crosged
 long poilcn identical in apperatice with that produced by crobsing the long polleried red with the yourd pollened purjis．But the nature of the \mathbb{F}_{2} generation is in same respects qeyg diflerent．The ratib of purples to reds and of longes to round in it cach case $3: I$ ，as before But instead of and nssociation batwen the red and the long pallen charaterg the peverge is the case．The lorg pallen character is nop associated with purpile find the round pollicn with red．The asochation，however，is not quite
complete, and the examination of a large quantity of similarly bred tinaterjal sheps that the purple longs are fabout twelwe thenes as numerous as the pupple rounds, while che fed rounde are rather more than three times at many ats the red longs. Now this peatifar resilt could be brought about if the gametic series producod by tlje F_{1} plant consigted oll $7 B E+1 B+1 b L \square 7$ out of every 16 gametes Fertileation between two such similar sertes of 16 gametes would result in 756 platis, of whel 177 would be purple longs is purple rounds, t 5 red longs, and 49 ted rounds-a propartion of the four difierent kinds wery close to that acthelly found by experiment It will be naticed thet. in the whole firmily the phoples ard to the reds as $\mathbf{3} \mathbf{3} \mathbf{1}$, find the longe ane afo there times as ramerous as the reunds. The peculiasity of the cene lies in the distribution of thaco two clitraters with refard to one another, In some way or other the factors figr blue and for long pollen become limited together in the oell divistons that give gize to the gametes but the linking is not comptete. This holds good fos all the four cise fid which repulion betwer the Wetors occure whem one of the two factors is intros duced by esch of the parente. What both of $1 / \mathrm{Fs}$

 The phenomena of repulsion and soupling bewtern separate fectors are intimately related, thourb hithata we liave not been able to sugiest why this should be so.

Nor for the fresent can we suggest why ceptain factors should bo linked together in the peculiar

Way that we have reasotd to sappose that they arre during the procese of the formation of the parmetes. Wevertheles the phenomena ane wery deninte, and it is not malikely that a further sturly of them may threw important light on the atchitecture of the living cell

APPENDTY TO CEAPTER TX

As it is posithe that same readers may cars in spile of its complexits, to enter ratlier more fully into the peculiar phenothenom of the coupling af chatecters, I have buought togetber some further asta, in this Appendix. In the case We have alerady considered, wheme the factors to: Blee colous nnd long polien are concerned, we have been led to suppose that the granstes produced by the heterouygons
 senes of oviles tertilised by a similat serics of pollett greus will give or genemion of the following compositien :-

and as this sheoretical raselt fits clecely rith the secual figures obtained by expeniment we bave yenson tox suppoang erat the heteroaygula plant produces a serics of gronetes in which the factora are coupled in this way. The antensity of the coupling, however, vafies in difierent case Where we are dealang with another fix fortity (F) nad
the dark aril (D) the expericmeatal numbers accord with

 intense In the cilat of ohe erect thandard (E) and bluenes (B) the coupling is epen wore intense, and the experimental evidente awalate at prosert points to the
 In Eridence also for supposing that the inemsity of the coteling endy vay is diferent farijies for the same pair of ractars. The ofowhing betwen blate and hong pollen is
 be on the $13: 4$: $1=13$ basis, But though the istensity of the mopling may vary it varies in an orderly nay if A and D are the two thats concernet, the resuls obtained in F_{3} dee explicable on the assumption that the ration of the four sorts of sismetes lroduced is a term of the series-

$$
\begin{aligned}
& 3 A B+A A+a n+36 \\
& { }_{7} A A^{2} \div A+A B \div 7 A^{5}
\end{aligned}
$$

In guch a series the number of gimetes embtaining A is tgoal to the numike lacking A, and the sade is true tor A. Consequenty the nunber of zygoles fomet coniains ing A is thete time as great in the nomber of apgotes which do not contain A; ond similarly fou \sqrt{B}. The peoportion of dotninouts to vecessives in each case is 3 is. It is only in the distribution of che ahaperefes with velation to
 catre

As the stidy of these serise presents another feature of some futerest, we may cossider it in a little more detail. In the accompanying talle aree set ote the refalt produced. by these pifferest serieg of gatuetes The neries marked by ar asterisk have alred y bean demonstrated experio mentally. The urst texm to the seritis in which all the fodr kinds of gemetmare aroduced in equal numbers, is, of course, that of a simpte Mencelian thee where no coupling occours.

	Cherembin al Facmers ian Comenic srie.		Furler fr meneralot.			
		E	${ }_{5}$	14 3		${ }_{\text {and }}$
8	三¢	B4	48	7	T	5
5	7:1:1 =	25	173	15	59	49
32	I5: 5 : L - 15	1084	737	35	51	825
64		$4{ }^{4}$	3 OPT	3	E1	450
125		16.9]	FIEL			
87		为 $\mathrm{ib}^{\text {² }}$	$33^{2}=12 N$	2N-	2-	-120

Now, as the toble shows, is is prossible to express the gametic surie by a gencral formula (m + B) $A D=A D+a B+$
 seties a plant productag such in serie of getheres gives rige to a fiatily of sygotes in which $3 x^{\prime 2}-(3+1+1)$ show
 both of the recossiofe characters, while the aumber of the two classes which each shom ene of the two dominarits ${ }^{3}$ (ini-1). When in such a series the coupling beomes
 its walue bocomes less and Iless. The latger as becomes the mere negligible is its value relatively to in^{2}. If, there fors, the coupling were very close the series $3 n^{3}-(2 w-1)$: $(2 n-x):(3 n-1): n^{n}=(3 x-1)$ would appramate mote
 Though the point is protathy of moee theoretical than practical interest, it is not inpossible that some of the tases which dave lithento ben fegurdad as fothaning a simpte 3 : I ratio will burn wat on fouther amilysias to belorig to this mote complicated scheme.

CHAFTER X

SW

In their simplest expressing the phenomena ex hibited by Mendelian characters ate sharp and clead cut Cheancut and sharp also are the phenomena of gev- 1t was naturad, thercfore, that a comparison should bave been early fostitnted betwen these two sets of phenomera. As a general rule the croes between a mele and a female sesclts in the producsion of the two seves in approrimately squal numberg. The eross between a heteroyyaus dominant and a rebesive also leads to engal numbers of feresgives and of heterprygore dominanth is at not therefore, possible that one of the sexeg is heterospgeus for a tactor which js lackizig iti libe other, and that the presence or absence of this factor detemines the sex of the ayotote P The results of some rejent pxpartimts wodld eppent to justity this interpotetion, at any rate in partrular cases Of thess the simplest is that of the common cumant moth (Ahtazar grossulatataj) of which there exists a pale variery (Fj 呂 17) known as kationt The experiments of Doncaster and Rayner Ehowed that the wikiety behated as a simple recessiwe to the
normal forme But the disurbution of the dominants and recessives wirh regord to the semes was pectian. The original aross was betworn a lotatiodor female and a normal male, All the F_{\sim} moths of both seves

Fy.
 Andituit valebs.
were of the normal gropshartata type. The F_{7} friects were then pained thgether and gave a generation consisting of $\frac{1}{g}$ mormal : 1 latatiolor: But all the dacticoldy wre temalea, and ajl the males

were of the motmal pattern. It was, however, folind possible to obtain the farforor male by mating a Jotioddr female within the F_{1} male. The famity resulting from this crass comsisted of nomma.] mates and

and the Eour sorts were produced in approximately equal numbers. In sucta a farmily there was na special resoctation of either of the two colour varieties with one sex rather that the other. But the reverge cross, F_{1} female b_{y} fadiow mele, gave a wery different result As in the prewions eross, suth tamilies egntaned equal nembers of the norratal. form and of the recassive variety. Hut all of the nomal grostariala were males, while all the dariwho wete females, Dow this scemingly complex collection of fact is rextily explained if we make the following three assumptions :-
(1) The grosculariada character (G) is dominant to the fontodor character (g). This is mbvionaly justifed by the experiments for, lenving the sex distribution out of ancoant, we get the expected
 of equality when tise hrterozygote is atosed with the teressive.
(2) The fermale is beterozvigous for a dominathe factor (F) which is lacking in the male. The coststitution of a female ds consequenty $P f_{\mathrm{a}}$ and of a mate $j^{2} f$. This assomption is is harinony with the fat that the seres are produced in appromimately rqual numbers.
(b) There exists repulsion between the factors G and F in a rygote which is heterowgous for them both, Such zygotes (f fog $)$ must way be females, and on this nsamption will produce gametes Fg and fir in equal nambers.

We may now construct a scheme for comparison with that on page 92 to show how these essumptions explain the experimental results. The
 Heriata male, which on odr nssumptions must be Ffg and $f / G G$ vespectively in constitution. Since the [emale is always heterogygus for F, her gatmetes must be of two kind wiz. Fo and $/ 2$, while those of the pure grorsudaritita male must be at fick When an owim $F g$ is fertilised lyy as spermatozoon $j G$, the

Fpo IE.

 Tery

resulting zygote, Ffog is heteroxygous for both F
 The eygote resulting fronj the fertilisation of an avum $A k$ by a spermatoroon $f(G$ is heteroygrous for G, but does not contain F, and therefore is a malle gearsiariada Sincis is male baing in constitution ffge must produce gametes of two kind 3 fir and $\sqrt{2}$ t in equal numbers. And stace we ate aspuming repulsion bewarl F and G, ite F_{1} Emale beng in sonstitution F / G_{G} thith protuce equal numbers of
gametes Fg and fig, For on our assumption F aidd G canaot enter into the satne gatmete lhe series of ganetes produced by the F_{1} moths, therefore, are for, fo by the male and $E_{g}, f \in$ by the temate. The kesultiag F_{g} generation ont gequently consists of
 $f / G G$ in equal numbers. In other words, the sexes se produced ith equal numbers, the propertion of
 the lactioury are females; that is to say, the fe: sults worked out on our assumptions accord with those actually produed by experiment. We may now turn to the results which should be obtained by crossing the F_{1} mothe with the dadiodar variety. And fust we will tale the cfas dacticolor female $\times \mathrm{F}_{\mathrm{I}}$ male. The gatnetes produced by the lacticolar temate we have already seen to be F_{E} and $/ \mathrm{F}_{\mathrm{E}}$ while those produced by che F, male are $f G$ ant $f / 5$. The bringing together of these two series of gametne must result in equal numbers of the four kinds of gyetes

 in equel numbers. Here, asain, the callorlated results. accord with those of experiment Lastly we may examine what should happen when the F_{1} female is crossed with the lowthoup male. The F_{1} female, owing ta the repulsion between F and G, produces only the two kinds of owe F_{g} and $f\left(G_{1}\right.$ and produces them in equal numbers. Since the twombor rate can cortaim ouither F nor G, all of its spermatocoa must befg. The results of such in cross, therefore, should be to produce equal mumbers of the two

lemales and of grotwioriata males And this, as we have already secn, is the atual result of such a crase

Before lenving the curtant moch we may alloude to an interesting discovery whiel arone out of these experiments. The hatwot variety ill Geat Brataim is a southem form and is not kmown to occus in Scotlatd. Biatiogs were madde betwen wild Sootch females and hodrotar males, The fatilies resulting From such matings were preciecly the same as those
 males and hatiodar females only. We wre therefores forond to regard the constitution of the wild grossu= deriata female as identical with that of the F, female,
 well as tor the factor for fomateness, Thaugh riom a region where haticolor is unktiontr, the " pure ${ }^{H}$ wild groswariat fertale is nevertheless a permanent moneger, but it cau never revcal its trine colours unlegs it is mated with a male. which is either heteroygeoz for G or pure fardober And an all the wifd northern males are pure for the growsu Aovata character thit chat nerep happen in at state of nature

An esgential teature of the case of the currant moth lices in the diferent results given by reciprocal crosecs. Lactiolor termale merssulariata male gives grotwhoriata alone of both sexes. Hot grosshlariada femsle x hortober male gives only grosublotiotia males and hwoiodor 「emales, Such al difference lietweert peciperal croseses kias also boen found in other anhimails, and the experimental resultes, though sometimes more complicated, are explicable on the same lines. An interesting case in which three factors

are cotherned has bern secenty worked out in poultre: The Silky breed of fawts is charatherised among other pecutitrities by a remarlabie abundanor of melanis pigment. The skifi if clull black, white the eonib and wattes ite ot a deep purple colous coutrasting sharply with the white plumage (Pl. $V_{4} j^{\prime}$. Dissection ehong thet this black piemert is widely spiead throughout the body, boing esperially marked in such membraines as the mesenterines, the periosteum, end the pia mater surrounding the braino It atso obeurs in the conncetive tissues among the truscies. Ir the Brown Leghorit, on the other luand, this pigment is not found. Recipeotal arosses between theee two breeds gave a remarkable difter. eree in result A crass between the Silley bein and the Brown Leghorn cock produced F_{7} birds, in which louth sexes exhibiter anly traces of the pigment Ds condal obserution they might tiave pasget for unpligmenten birds, for with the exception of an occasional fock of pigmeat theic skirnt combend wattles were as cleat as ha the Brown

Fro lag.

 Hicmerition The leg niky mish o
 4 sen il promit of pirnult

Leghorn "Pl. Wr, 3 and 4 , Dissection revealed the presence of a slight amoune of interabl pigtient Such liots bred together gave some offepring with the full pigmentation of the Silk-y, some without any pigment, and others showing different degrees of
pigment None of the F_{g} male birts, lowever showed the full deep Prgmentation of the Siliky

When, howeres, the cross was made the other way viz Brown Leghorn hen \times Silky cock, the resut was diferent While the F_{1} mele bitds were almost destitute of pigment as in the previtul cross, the F_{1} hens, an the other hand, were nearly as decply pigmented as the pure Silky [户]. V, 2). The male Silly transmitted the permentation, but only to his daughters. Suct birls hred together grove an F_{1} generation containing chicks with the futl deep pibment, chicks without pigment, sund chicks with warious grades of phergentation, all the different kinds in bell texes.

It aualysing this complicated case many ather difterent cresses were mate, but for the present it will be sufficint to mention but one of these, viz. that between the F_{1} bids and the pure Jicous Leghort. The eross between the F, ben and the Brown Leghorn cock produced anly birds with at silight amount of pigment and birds without pigment. And chis wat true yor both the deeply pigmented and the slightly pigmented types of F_{1} hen, But when the F_{r} cock was mated to a Brown Leghern her, a definite proportion of the chicke, oue in eight, were decety pigmented, and these ineety pigmentat
wirat were ndwas fewaler (d) Fig 21) And in this cespect ell the $F_{\text {, male }}$ meluved aitie, whether they were from the Sithy hen or from the Silky coces, We have, theretore, the pariadox that the F_{1} hen, though berels doeply pigmented, centinot trans mit this condition to any of her offoring when she is mated to the uafrgonented Brown Leghom, but that, when simplarly mated, the F_{1} cock can transmit the pigmented comdition to a quater of bis bemale

Tid. zn

oflepring thongh he himself is almost devoid of pigment

Now all these appatently complicated results, as well as many others to which we hawe not alloded cain be expresse by the following sifnele stheme. C"]ere ant thre [actora affecting pigment, wiz, (1) a pismentation factor $(P) ;(2)$ a factow which inhabits the producticn of pigment (i); and (3) da Facto for dernaleness (F), for which the femate birds are heterogggous, but which is not present in the males. Furthers, we onake the assumptions (x) thet there ja reprlsion betpen F and J in the female syate $(F f t$, and (d) that the male Brown Leghorn
is homozygous for the inhibitor functor (0 , but that the hen Brow si Leghorn is always heterozygous for this tractor just in the same way as the [male of the currant moth is always heterozygous far the grobowlariat factor. We may now proceed to show how the explanation fits the experimental fats which we hate given.

The Silky is pure for the pigmentation fate or but tues not contain the unsibitar factor The
[事] FPFPiil
Elver
gamete

*pit [d]

Flex

[ब]

 Brourl Leghorn, on the offer band, contains the inhibitor factor, but not the pigmentation factor, To crossing a Silky henwitha Brown Leghorn cock we are mating two birds of the constitution $A_{i} P_{j-}$ and $J / f p H$, end all the F_{1} birds sere botsgently heterozygous for both P and I. In aid et binds the pigment is almost but mot completely suppressed, and as both sexes are of tide same constitution with regard to these two factors they are both of similar appearance

In the reciprocal cross, on the other fund, we are
 hen which on our assumption is heterozygous for the inhistater factor (0) and in constitution therefore is Ffphi. Owing to the repulsion between F and A the gamete produced by such a bird are Fops and $/ P$ in equal numbers. All the gametes produced by the Stithy cock are f Pi Hence the constitution of
the Fi male birds produced by this arose js f/pmif as belore, but the female birds must be ell of the
 jully pigmentad concition bo bia daughters, bexause the gametes of the Brown Leghorn bel which contain the facter for temalencss do not ontain the inhibitory factor owing to the repulsign between these factors The miture of the F_{2} generdtion in each case is in harmony with the above scheme As however it sares to inlustrate certain paints an connection witly in= termediabe forms we shall postpone futher consideration of it till

[¢] Ffpplit	HPPit [6]
Elves	हाve:
8.ametes	samites

 female by F_{1} tiale. The Browt Leghors hes is on our hypotherss Sfop $\tilde{i}_{\text {i }}$ and ptoducce gametes $\sqrt{\text { ghi and }}$ Jor. The F_{I} cock is on our hypothesis $7 t \mathrm{P}_{3}$, and produces in equal oumbers the fout kinds of gametes $A P I_{1} f P_{i}, A_{1} F_{1}$. The result of the meting of these two series of gametes is given in Fig. 24 , Of the cight diferent kinds of zygote formed only one contains B in the abomies of S_{4} and this is a terale The result, ta we have already geen is tit accordance with the experimental facts

On the other hand, the Brown Leghorn cock is on our hypotheshs $/ \int p p / I$. All his gametes consequently contain the inhibitor factor, and when be is mated with an

Fra, 24

 F_{3} hen all the xygotes produced must cientain I. None of his offspring therefore can be fully prigmented, for this condition only occurs in the abbsence of the inthibitor factor antong sygotes which are either homozygous or heterczy zous for P.

The interpertation of this case turns upon the constitution of the Broun Leghorn hen, upon her heterozygous condidion with regard to the two factors F and $A_{\text {a }}$ and upon the repulsion that occurs between them when the gametes wre fortwed. Through an independent set of experiments this wicw of the nature of the Grown Ieghom hen has been confirmed in an interesting way. There are fowls which possess neither the factor for pigment. wor the fiolhibitory factorp which are in constitution phaisi Suth birds when crossed with the Sllky give dark pigr mented birds of both sexes in F_{1}, and the F_{8} generation consists of piequented and unpigmented bib the ratio $3 ; \mathrm{I}$. Now a oeck of such a strain crossed with a Brown Leghorn hen should give only completely unpignented birds But if, as we have supposed, the Brown Legham hen if producing
 such at cross should be heteroaygous dor J_{1}, in in constitution $/ f / y^{7 /}$, whille the hets bitds though identica! it apaearance so far es abernce of pigmentation gres, should not oontain this factor but should be constitutionally sif/rit. Croseg with the pure Sulky, the F_{1} binds of opposite sexes should give an crotirely different result. For while the heme

 Fur
should give only decply pigmented birds of hoth sexes, the cocks should glve equal numbers of decply piginented and slightly pigmented birds (af. Fig2 2j) Thest were the results whech the experintient actually gave, thus aftording strong confirmation of the wien which we hase been lew to take of the Brown Leghoni hen. Essontially the poultry case sis that of the conrrint moth, It differs in theat the
factor which repels lemaleness produces we visible effect, and its prestre or absemee sath only be deter mined by the introduction of a third factor, that for pigmentation.

This conception of the nature of the Brown Leghow hen lends to a cutious peradox. We hatwe stated that the Silky ooth transmite the pismented ondjition, but trensmits it to his daughters only, Apparemtily the case is one of unequal transmission by the father Actually, as our analysis has showns it is once of unequal transmission by the mother, the father's contribution to the ofsjering being dienticel for encliex. The mother transmite to the daughter her cominant quasity of femalenoss "but to balante this, as it wefe, she transmits to her gons another quality mbich Jot dauthers do not tecerve. It is a mathe of common expericrice among human bamile s that in respect to particulas qualities the sons tend to resemble their mochers inore than the daughters do, and it is not improbible that such obsereations bave in real foundation Eor which the clan may be provided by the Brown Leghom hen.

Nor is this the anly teflenion that the Brown Leghom suggests Owing to the repulsion between fthe factor for demakenes and for pigment inhibtion, it is impossible by any form of mating to friale a hert which is bomorygous for the inbibitor factar, She has bartered away for lemallenes the posstillity of ever receiving double dose of this tactor, We keopr that in some cases, as, for example, that of the blue Atidatusian fowl, the qualities of the inclividual abe markedly different aocording as to whether he or she has received an single or a double dosm of at
given factor, it is not inconceivable that some of the qualities in which a man difers trom a woth Ere founded upon a distinction of this nature. Certain qualities of intelloct, for example, may deperd upon the existence in the indiridual of a doubile alose of some frator which is repelled by fembleriess if tjuis is 80 , and if woman is bent upon achieving the results which stuch qualitim of intellect imply, it is mot. oducation or trabing that will help her. Her problem is to get the factor or which the quality deprends. intor atr ovip that carnes also the factor for feriale. 는ㄷㄷ․

CHAPTER XI

sEX (matheder)

THE cases which we fore considered in the last chapter belong to a grovp in which the peculiaritics of tuhertance are most castly explained by supposing that the female ts heveroggous for rome factor that is mot found in the mate. Femaleness is an additional chatacter superposed uponi a basis of malleness, and as we botacine that thene is asparate fetor for cach the full congtitutional formula far a female is $H / M N$, and for a male $J / M M$. Both semes ane homotrgous for the male element, and the difterence between them is due to the presence or absence of the female element $⺊^{5}$.

There are bowever other cases for which the explarhation will nat suffice, but can be best finterpreted on the wiew that the male is heterouygolla for a factor which is not found in the femele. Such a casc is that recently described by Morgan in Arsterica for the pomace fy (Droroprida awderophita) Normaly this little insect has a red cyer but white cyed jndipiduals are bnown to obent of farc epores. Red eve is dominant to white. In their relation to sex the gye colours of the pomace fy are fiherited
on the same lipes as the grosswariafo and hetricior patterns of the cuntant moth but with one erssential difference. The factor which replels the red-eye fracter is in this cance to be fourad in the male, and leere consequently it is the male whech mast be regarded as heteroypgous for at sex factor that ta lackerg to the female.

In order to bring these enseg and others anto line an interesting stagestion has recently been put formard by Batescn. On this sugerestion each sex iz heteroxgrous for is own sox frotor anly, and does not contain the dactor proper to the opposite sex. The male is of the constitution $M \operatorname{He} / f$ and the female Fifmm. Each gex prodeces two sorts of
 the chee of the male, and
 From, for int that of the female But on this view a further supposithon is necessary. If each of the tho kinds of spermatozea were cipaibie of fertllising each of the trua kinds of gva, we should get individuals of the congtitution Monfy and maff, as well as the nornel thales and females, Marf and Ffomon As the facts of oudinery bisexual reproduction afford us tio ground for dssuming the existence of these twa clesses or individuals, whaterer they maty be, we must suppose that fictiligation is prodecitive andy between the spermat towa carrying M and the owa without F, or between the spernatoran without A^{T} and the ava contaming F. In other woids we must on this vicn suppose that fertilisations betwen entain forme of gametes, nem
if they cath obeuf, are incapale of giviag rise to ryotes with the capacity fer Furdher development, If we admit this supposition, the shemems fust given with cower such cases as those of the currint moth and the fowl, equally an' well' as that of the pomace fy. In the fomer there is repulsipn betwern either the grosulaviala factor and F, or else betwed the pigment inhbitor lactor and F_{1} while in the latter there is repulsion betwech the factor for red ere and M.

Whatever the merits of demeritas of such a scheme it certainly does offer an explajation of a

Fig, 站
 nove oi inseribece of silever
 "prome atraged [nilividule

 peculiar form of sex limited inherthance in math. It has long been a matace of cammon kownledye that cetpur-blitid. ness is much more oommon Among men than among Whomen, artd algo that unaffected women can tranmit it to their sons. At first siegh the case is not unlike that of the sheep, where the homed tharacter is apparenty dominane in the mate hut recessive in the remaie The thypothesis that the colour-blind condition is due to the presence of an extea factor as comparad with the nomal, and that a single fose of at whl produce colotit-blindiase in the male but not in the lemale, will cover a good many of the observed lacts (cl. Fig. 26̈). Morever, it. serues to explain the remarkable fact that whe the sons of coldur-blind wornen ate also calaur-blind. For a worman cennot be colour-blind unless she is
homorygous for the colour－blind factor，in which ease all ber children must etet a siregle dobe of it even if she matries a normal male，AnE khts is sufficient to produce colourmbindnese in the male though not in the female．

But there is oue notable difference in the casc as compared with that of the sheep．When crossed with pure hormiegs ewra the lucterpzs－gout hormed fant transmits the fooned cileradter to half hisk
 colour－blind man docs not behewe atogether like a shop，for he apparently does not transmit the collout－ bind condition to any of his male offipting．If however，we suppose that the eolour－binind factor ：5 repelled by the factor for mi⿱丷⿱一⿱㇒⿴囗⿱一一夊退ness，the amended scherse will cover the observed tacts．For，demoticig the colour－blind fector by X ，the gametes producad by the colour－blind male are of two spots maly，wit M / x and x / A ．It he marties at nomal woman
 to give normal males ，whe the anermatoroa wha unite with ava Foux to gite feritles which are heterogegous for she colous－blind fector．These daughters ate themedves nomal，but transint the conditien to about half their sonts．

The attempt to discowel a simple explanation of the datire of sex has led us to assume that oertain combinations between gametes est incapabie of Eiving tige to zygotes which can develop forther． In the various cases hitherto comsidered there js fo reason to suppoge that anything of the sort occurs， of that the differest peunetes are otherwise that completely fertile one writh another One peculiar
case，howewer，lus bem known for several years in which some of the gametes are apparectly tricapable of untiting to produce offepting．Vellow in the mouse Is dominant to agouti，but hitherto a homazyous yallow has never berem met with．The yellous from faniliza where only yellows and agoutic oftwr prom duce，when bred together，grellows and agoutis in the ratió $2: 4$ ．IE it were an ordinary Mendelian Gage the ratio shoulat be $3: 1$ ，and one out of every three yellows so bred should be homayygous and zive only yellows when mosed with sgoutt．But Cuenot and othere heve shown that af of the yellows ane heteraygous，and when cerosed with angoutis pive both wallows and agoutis，Wre are led，there－ fore，to suppose that an ownmi canfing the yellaw
 which also bears this lactol．In this way atone does it secra possible to explails the defientry of yellows and the absene of homozygurs ones in the familite arising from the mating of yellows tognther． At pretent，however，it remeins the moly definte Hntance among amimals in which we have ground for atsuming that atyething in the nature of unpros ductive fertilisation takes place．${ }^{\text {．}}$

If we than fromatimals to plants we find a more nomplicated state of affaits．Generaly speaking，the higlicr plants ars hermiphtodite，both ovules and pollem graths pocurting on the sathe dower，Same Plants，however，like mast animals，are of sepriate sexes，a singie phant bearing only male or fermale flowefy．In other plants the seprate howers are

[^4]sither finte on temale, though both are botrie on the same individuat, In others, ogain, the comitions are even mare complox, for the same plant may bes flowers of there kinds, vis male, female, and lierma= phoditer Or it may be that there there forms gcour in the sanue species but in defferent induridurls - female and hermaphodites in ane species; males, females, and hermaphodites io another. Ofie eese, however, mast be mentioned as it sugreets a passibility which we hawe not hitherto entountered. In the gommon English bryony (Aypata diotob) the sexes atc separate, some plante having only mede and others only fernale bowers. In anather Europenn species, B, tha, both male and female fowers oocur on the same plant Cortena crossed thege two species reciprocally, and alo fertilised B. dowica by its omin mile with the tollowing resulte:

		뭄 only
albar	n dioina ef	号 9

The point of chiel interest lies in the strikiag difier ence shown by the recipecel crosese between dinica and abo. Males appear when aba is used in the lenale parent hut not when the lemale mitofat is crosesel by male ehar. It is pousible to sugpegs more than one seluetive to cover thase fects, but we may confine ourselwes here to that which seems most ifi accort with the getueral trent of other cases. We will suppose that in from femalences is domimant to maleness, and that the famale is heteroxygoes for this additional factor. In this species, then, the female produces equal numbers of,
ovules with and withont che fernale factors while this factor is absert in all the joblen gratis. $A H_{a} 5$
 diozadod, and we must therefore suppose that ablat produces male and female anules in equal numbers
 Untess, therefore, we assurte that there is selecinve fertillantiou me must suppose that all the joullen grains of atore pergy the fonale factor-in other worcs, that on whe the sex factors are concerned there Is a difference betwed the owdes and pallen grains bome by the same plant Untorturatery flather investugation of this case is rendered impossithe owing to the complete gterility of the Fg plants.

That the possibitity of a dinerente bationen the ovales mind pollen grans of the same individual must be tikeri into account in future work there if suidence from quite dinderent soures. The double stock is an old bortioulural \sqrt{a} outite mod for centurjes it has been known that of itself it suts mo seed, but must be ubised from spocial strabse of the single wariety. "You must understand withatl, wrote John Parkingon of lis gillolnower, "that those plants that beare double flowers, doe beare no saed at all . . . Wut the onely way to have double tewers aty yeare is to suve the seedes of thage plants git this kide Exat berre single fowers, for from that scede will rice, some that will bedre singe, and some donble fowers." Whith regard to the nature of these duable-thoming strains of singlear Miss Saunderg]at recently brought out gome intereating facton She

[^5]Erbsed the dauble, throwtur eingles with pure singles telonging to atrains in which choubles never ocetrit The cross was anade both ways, and in both cases all the F_{1} plantr ware single, A distinctiong, howewer, eppeared when further gelueration wat raized from the F_{1} plants All the F_{n} plants from the pollen of the double therwing single behtued

Flig. ひす

like double thowing singles, but of the F_{f} plints from the avules of the double thowers some bebahed tas doukle throwers, and some as pure singles. We ane led to inter, therebore, that the ovales and pollea grains of the double throuts, thougit both prodtoced by the same plant, difer in their telation to the tactor (or factors) for doubleness Doubleness is apperently carkied by all the pollem grains ar sach
planta, but athy by some of the orules. Though the nature of doublenese in storks is not yet clear]y understood, the facts discopered by Miss Saunders sugest strongly that the ouzles alsd pollen crains of the same plant may difer ith their tathemitting propertes, probably owirg to some process of gegregntion in the growing plant which leads to an भnequal diserfbution of siome ar other factore bo the oells which give rise to the owules as compared

with these Fow which the pollen grains eventuaily spring. Whether this may tum ant to be the true account ar not, the joossionitjy mast nat he overlooked in future work.

Fran all thits it is clear emough that there is mosh to be done before the problem of sex is solved aven go tar es the biologist cati ever expect to solve it. The possibilities are many, and many a fresh set of fets is neded before we cath hope to decide among then. Yot the acosinall glimpes of clearcut and orderly plenomena, which Mendelian
spectactes luwe already enabled us to atch, offer a frit hope that gome day they may all be brought 3nto focus, and assighed their proper places ön at general getheme which shall cobbace them all. Thea, though not till thens, will the problem of the ghature of sex pass from the hands of the brologist into thase of the physicist and the chemist

CHAPTER Kll

INTERNEDIATEE

So far as we have gone we have found it possible to express the various characters of anmals and platits in terms of befinite bactors which ate carried by the gratores, and ate, distribued according to a definite scheme. "Whatever may be the nature of these factors it is possible for purposer of analysif to treat them as indivisible entities whicli may or may not toe present in any given gamete Whach the tactor is present it is presert as a whole. The visible propertios avereloped by a zygote in the course of itt grovith deperid upon the arature rand wartety of the factors etried itn by the two gametes which went to its making and to a lest degree noga whether each factor was brought in by both gameter of by one only. If the given factor is braught in by one gemete only, the reswling heterozygote may be more or less intermediate between the homodyand form with a double dose of the factor and the homozygous form which is entirely destitute of the tactor. Oapes in point ane those of the primula fowrers and the Andalusian fowls. Nevertheless these intermediates produce bing pure gametes as is
ahoun by the fact that the pule pronerel types appear in a certain propotion of their onspring. In such cases as there there is but a singre type of intermediate, and the simple ratio tr which this and the two homasygoes foems appear fenders the interpretation obvioun But the nature of the F_{s} gereration may be much more complex and where we are dealing pith factors which interact upon bie another, may even prisent the appearane of a serims of intumediate torms yrobling from the condition
 occurred in the ether. As an illinstration we may consider the cross betwren the Brown Legharn and Silky fayls whics we bave alfendy dealt with in connection with the imheritace of sex. The oftemimg of in Sidky hen mated with a Prown Leghoin are in both rexes birde with but a trace of the Silly pigmentationt, But when such tirds ate bred together they produce a ferieration opsisting of chichs an decply pigmicoted as the uriginal Siley paremt elioks deroid of pigment like the Browis Leghorn, and Gieks in which the pipmentation ghows atcelf in a variety of intermediate stages. Indeed from a hundred ohicks bred in this way it would be possibile to pick out a mumber of indi. vituals and amatore them in an apparantly continuous series of graduelly increanijg pigmentation, with the eompletely unplgmented at one end and the most deply pientinted at the other, Neverthelers, the carse jš ore in wheh complate segregetion of the wifecont factors tekes place, and the apparently continuous geries of intermedietes is the result of the interaction of the rifferent fectors upon one another. The oan-
 produces in equel mumbers the botar sorta nt gammea
 this case is Fifpotia Owidg to the repulsion betwerti F and S ghe probuces the four kinds of gametes
 nambers．The

FPl		$\begin{aligned} & \mathrm{FPi} \\ & \mathrm{EPI} \end{aligned}$	$\begin{aligned} & \mathrm{FPi} \\ & \mathrm{ipi} \end{aligned}$
\％	4	薷	9
$\begin{aligned} & \text { Fpi } \\ & \text { Fif } \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{pi}} \\ & \mathrm{P}_{\mathrm{i}} \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{pd}} \\ & \mathrm{p}_{\mathrm{pI}} \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{p}} \mathrm{ipi} \end{aligned}$
－茜	早	9	\％
$\frac{\mathrm{TP} \mathrm{P}^{\mathrm{I}}}{\mathrm{TPI}}$	$\frac{\mathbb{P T}}{\mathbb{P} \mathrm{P}}$	$\begin{aligned} & \mathrm{fPI} \\ & \mathrm{FPI} \end{aligned}$	$\|\overrightarrow{\|p\|}\|$
E	6	6	d
$\begin{aligned} & \mathrm{fpI} \\ & \mathrm{EPI} \end{aligned}$	$\begin{aligned} & \mathrm{Fpl} \\ & \mathrm{Pr}^{2} \end{aligned}$	$\begin{aligned} & \mathrm{fp} \mathrm{I} \\ & \mathrm{f} \mathrm{I} \end{aligned}$	$\frac{p \mathrm{pi}}{}$
6	d	0	ず

Figu all

 hen with lows Ledlerbuch result of bridejtge two such series of grameres together祘 ghown in Fig． 28．Out of the gixtecy Eypes oi 2ygote fortsed one
工ypous tor the pig－ mentation factor， and dous not con－ tain the inhtbitor factor．Suctha bird is as deeply pigmented as the pure stlky parent Two gegain，contain on airgle doar of P it the absence of I_{0} These are nearly as dark at the pute Silky Four $\begin{gathered}\text { grgotes } \\ \text { are destitute of } P \text { though ther may or }\end{gathered}$ may not toatain f ．These binds are completely devoid of pigment like the Brown Ieghoms The remainitig nine grgotes show watious combinations of the two
 Ppoli，and in each of these cases the pigment is more ar lese intense according to the constitution of the birch．Thus a bitd of the eonstitation $P B /$

Approachee in pigmentation a bird of the constieution Ppis, while a bied of the conntitution $B H / /$ has but litule more pigment than the unpigmented bitd. Is this way we have seven distinct grades of piectiontam tion, and the series is further complicated by the fact that thene whrous grades axhibit a rather different
 mate DE a female bird, for, generally speaking, the female of a fiver grade exhibis rather move piement that the corresponding male. The examanation of a number of birds bred in this way might çuite well suggert that in this cese we werc dealing with a character which cowid break wp, as it were, to give a continuous serics of interepalins forms betwen the two extremes With the constart handing of large numbers tit becones possible to rucornise most of the different grealea, thouglr even 50 it is posaible to make mistakes. Nevertheless, bs brefing terta heve amply ghown, we ate dedjing with but bwo interactiog factorg which segregate eleanly from ond another according to the strict Mendelians tulc. The appronch to contumity jo wariation cxhibited by ibe F Pemerdion depencls upol the fect that these two factors interact mpon one another, and to biffert degreen acoording as the zygote is tor one or other or both of them is homasycous or a beterogegous state Mopeovet, certailh of these intermediates will treed true to an intermodiate sondition of the pigmentation. A male of the constitution $/ f^{3} P P S$ when bued with [emales of the constitution fffpry will produce only males silke itgelf and teralos Like the maternal parcot. We have dealt with this case in some detaij, because the cxtctenge of familics
showing a series of intermediate stages between two chatacters has sumetimos been brought forward ith opposition to the view that the characters of orgentans deperd upon specific factors which are transinited according to the Mendelian rule But, as this case from politry shows cleerly, neither the axistence of such a cortituous serica of jutermisdiates, nor the fact that some of then may breed trae to the firtermedinte pondition, are incompatibic with the Mendelian principle of segregationu
lis conbection with intermediaters more cogent objection to the Mandran wiew is the case of the first cross between twro dehinite varicties thenceforwar beceding true The oage that will taturally octur to the reade is that of the metlattop which resules froca the eross betwoen the negre and the white, Accordine to geneal opinion, thege mulatog, of intermediate pigmentation, coabinue to produce maldattos. Unfortunately this interesting case bas never been ritiedly invectigated, and the statement that the mulato breeds true rests almost enticely upori intormation that in gerveral and often Waguen It may the that the inderitange af skin pigmentation in thig instance ts a genchite exception to the normal rule, but at the same time it must not be lougoten that it may be one in which scveral inkeracting factors are concerned, ano that the pure white and the pure blacte are the sebult of combingtions which from their ratity are apt to be averlobled. But until we are in possession of arempate informetion it is inpossible to proname debnitely upon the nature of the inheritarme in this case

On the other hath. from the eross between the
darkly pistouented Enstetl races and the white segregation seems to accur in tribsempit genmations. Familins are to be Eund in which one parent is a pure white, while the ofher hat arigen fom the crost bebreen the dark and light ith the first ar some subsequent generatiou Such families may contain

F3n, 解

children indistinesuisinable from pure honds as well as children of wey dark and of intermediate phates, As an example, 1 may give the following pedigos which was kind ly communicated to che by an AngloIndtan fiend (Fig. 29). The Enmily had gesided jun England for several enctations, so that in this case there was no question of a futher admixture ot biack. Most noticalble is the family produced by a wery tarth
lady who had thatricd a white man Sothe of the childen were internediate in colour, but two were fiar whater fond two were dark as dark Hendus. This sfarp segregation or splitting out of blachs and whites in addition te intemediates strongly suggests that the nature of the ingeritathe is Mendelian, thongen it may be omplicated by the existence of several factors which may also react upon onc another Cor must it be forgotten that in so bit ins these different ractorg are concermed the whiter themselven may difer in copstitutioh withnut shawing anty trace of it in their apporanoe. Wefore the case can be regarded as settled all these diflerett porsibilitier mall have to be defititely tosted. With the dark Eastert tolecs as with the negro we cannot lupe of come to any mondsibn urit me lave evidence collected by crilical' and competem: ohservers.

Though for the fresent we must legard the case of the negro as not prowen, there are newertheless two others in which the heredity would appear not to foflow the Mendelian rule Gostle its Amerim erosed the lop-eared rabbit with the normal formp, and found that the F_{1} mimals were freternediate with respech to their eark And subsequent exjeriment showed that, on the whole, they bred true to this intermediate condition. The other ange relates to Lepidoptera. The spectiled mood butterfly (Pararge geridi has a suthern form which siffirs tom the nothern one in the greater prightness and depth of its yellow-brown markings. The northern Form is generally distinguished as war deriodes Batesor crossed the soustuen form from the south
of France with the pialer British form, and fourd
 colour, and thas in gulboquent gemeretions the parental tfpes did mot recur. Thege eases at present stand alone It is prosible that further reseatith alay reveal compleations whith mask or finterfere with an underlyind process of sésteration Dr it may bo that serrgation foes not occur owing to seme definte plysialogical reason which at present we do not understand.

And here it is imenossible zot to 1 ecall Mendel's own experinaces with the Hawkweds (FFiwactum) This genme of piants cxbibits an extradizaty jrofuston of borms clitering from ane another gomethmes in a single Eature, sometimas in several. The question ns to how har thege nomerous forma were to be classified as distinct speties, how he as warieties, and hew far és products or chance bybridisation, was even at that time a source of keen controwersy among botanists. There is litale daubt that Mendel andertook his experiments on the Harloweds in the hope thet the conception of unitecharaceers so brilliantly demonstated for the pea mould serve to evplain the gicat profusion of forms among the Hicraciume Owing to the minute size of their forets these plants offer vary considerable techaical difucalties in the way of erous-fertiligation. By dint of great perswetande and fabour, however, Micadel sucoceded in obtaiung a bew crosecs between diferent forme These hybrids were reared and a further genaration produced from them, and, wo doubt somewhat to Mendel's chagrin, ewery obe of them prowed to breed. true There was a complete atorsno of lluat segrega-
tion of chatacter which he had shum to exist ja peas and beans, and had probably fooked forward with some confidence to sixdiog in Aftracinan More than thirty years pased bebore the matter was clearet up. To-day we kmow that the pecultar behaviour of the hybrid Hicraciums is due to the fact that. they nommally produce seed by a pectiliar process of parthenogenesis. It is poscible to take anl unopened thower and to ghose off with a razor all the male organs sogether with the stigmata through which the poillen reaches the orules. The fower, severtheless sets perinctly zotd seed. But the cells from which the seds develap are not of the shme nature as the notmal outhes of a plant They ate not garnetes, but retin the double strututute of the materand cellg. They are tather to be regerded as of the nature of buds which early become detached From the piethertock to lead an independent existemoc, and, like buds, they reproduce expetly the maternal characteristics The evecowery of the true noture of this case was only rendered possible by the develogment of the stady of cytology, and it was not given to Mended to live tong enoughto lentu why his hybrid Hicraciums all bred true

БHAPTER XIL

FARTAT1ON AKD EVOLLTHNN

THrougr the fects of heredity we have mached a theve conception of the individual. Hitherto we hate been accustomed to distinguish between the members of a Camily of rebbits like that fllustrated on Plate
 making use of certain external leatures such as the cont colow or the markings, as contrenient outwerd signs to express our iden that the indiwiduality of these different animale is sifferentr Apart from thibs pur notions as to what constituted the indiricuajity fir eadel case were at best but yaguc ilendelien analysis has plaod in our hands a more precise method of estimating and expressing the variations that ref to be found betwen one indjondual and another Instead of looking at the individual es a whole, whith is is some vague why endowed with an individuality marking it of trom its lellowes, we now regard it as an crganism built up of donnite ctare acters superimposed on a basis beyroud whith for the moment our analysis will not takr we we have bagun to realise that each individual has a detinite architecture ${ }_{r}$ and that this architecture deperids
primarily ujon the number and wariety of the fictors that existed in the two gemetcs that went to its buildung. Now most species exhibit consider= able variation and exist in a mumber, often wery lerge, of more fo les well-chined varisties. Hon fer can this grant wariety be explained in terms of comparatively small number of lactors if the number of possible forms depends upon the number of the fictors which may le persent or absent ${ }^{\text {P }}$

In the simple csac where the homorygous and heteroyggous consitions are indiatifgutshable in appearance the number of poselible forms is z_{3} rajsed to the power of the number of factors eoplcerned. 'Thus where ane fatror is goncorned there are only $2^{2}=2$ prigible forms, where then factors are
 ing from one another in at most ten and at loast one chardeter wiocre the lactoas interact upDl one another this number will , of course, be considerably increased If the heterozyous born is different in apparance from the homozegous form there are three possible forms monected with cach factor: for ten such Getors the possible number of indi= widuals would be $3^{14}=59,049$ t $\sqrt{\text { or }}$ turenty such factore the possibe number of cifierent ithividuals would te $3^{30}=3,486,784,40$. The presence or abstrice of at emparatively small mumer of factors in a spectes catrtep with it the possibility of an enomous range of individual waiaten, But every onte of these individuals has a pertectly definite con= stithtion which can be determined ith each case by the ordinary methods of Mendelian analysian For in cvery instance the variation depends upon the
presence or absence of definite fectors carricd in by the gametes from whose union the induvidual resulte And es these factors separate out cleanty in the ganctos which the individual forms, stach valiations as arperat upon them are transmited striothy acoording to the Mendelian geheme Provided that the anstitution of the gemetes Is thenanged, the heredity of gach patiation is independent of any change in the eonoitions of nutrition or erviranment which may operate upon the individual producing the gametes.

Butans cverybody kitows, an indwidmil organism, whether plent or animal, reacts, atit often refots markedly, to the cnvirommental ennditions. under which its life is pussed. More espectally is this to be seen where such tharthers is sige or weight ate oncerned, Mare sunlight or a rieher soil may moan stronger growth in a plant, better nutrizion mayr result in a fone animal, superber education may lead to a more intelligent math But athough the changed coqditions produce a ditect ellect upon the individual, we have no indispotable evidenoe that such alterations are comocted with alteratione in the nature of the gameter which the individual produtes. And without this such variations carpor be perpetuated througlh heredity, but the corditions which produce the eflect must always te renewed in each fuccessive generationt. We gre led, therefore, to the conclusion that two sorts of yariations cxist, those which are dee to the pretence or spshitit factore in the oryansorn and those which are due to the divect effect of the enviromment during its lifetime. The former are known at mutatiobs, and are inherited actordicg to the Mendeljar stheme; the
latter have been termed fluetuntions, and at present we have no walid reasen for supposin管 Lhat they ate ever joherited. For though instanoes may the found in which effects produced during the lifetime of the individual world epperr to affert the oflisprigg this is not. neessarily due to haredity, Thus plaints which are pootly nouriged and grown hisder admerse conditions may set seed from whinch come plants that are sanaller than the normal athoagh grown under most favourable conditions. lt is matural to attribute the smalier site of the oftepring to the conditions andar which the jarents were grown, and there is no doubt that we should be quite right in doing 50. Newertheless, it need have nothing to do with heredity, he we have already pained but, the seed is a laruth planl: which dfaws its nourighment from the mother. The size of the offspring is affected beceuse the poorly nourished jorent offerd a. bud environment to the young plants and riot because the gametes of the parent were changed through the adwerse contitens under which hit grew The parent in this case jo not only the profincer of gametres, but aloo part of the enviroment pit the young platid, and it is in this latter capaciby that it atiects itis offerring Wherever, as in plants End mammals, the organiesn is parasted upon the mothert Auring ie arlier stages the state af nutrition of the Juther with ahmost certatnly react upan it, ance in this
 j5 brought about Such a connection betweem mothet. and offspring is purely ane of emvirament $\mathrm{and}_{\mathrm{a}}$ it cuntiot ton throngly emphasifed that it has nothing to do with the ordithary process of heredity.

The distinction between these two hinds of wariatipn, so entively diferent in their telisations, renders it possible to obtain a cleater wiew of the procese of evolutiont than that recently prevalent As Darwin Jong ago realised, eny theory of cyolution mest be based upon the facts of heredity and variationt. Erolution any comes about through the survizal of ctaten watiations and the elimination of others But ta be of any moment in evolutionary charge a veriation must be inherited. And to be inherited it must bo fepresented in the gameteg. This, as we have seen, is the ease for those variations whoh we have temmed mutations. For the inberitance of ducturtions, on the other hanc. of the variations which tesult from the direct amtion of the ervirot. ment upon the individual, there is no indisputable suidence Camsequenty we have on reasor for regarding them as playing any part to the productioh of that succession of temporarily stable corms which we term evolution. In the light of our present knowledge we must regand the mutation as the basis of cwolution-as the material upon which natural selection wotks For it is the only form of variation of whose heredity whave any certan knowledge

If is cuident that this wiew of the protess of evolution is in some respects at variance with that genterlly held during the past hall century. There we were 學ven the conception of su abstract type representing the species, and from it most of the indtyiduals direeged in wariaus directions, thouth, generally speaking only to vefy small cxtent It was assumed that atry wereation, howevel small, might have a selection value, that is to say, coutd be
trenswitted to the offpping Some of these would possess it in e lest and some in a greater degree than the parent. If the waration were a useful ones those possessing to a rather greater exterit would be fawoured through the action of matural selection at the expense of their less fortunate bretbrem, and would leave a greater number of oftspilie of whom sone possessed it in an cuen mome marked degree than thernselves, And so it wozld go on. The process was a cumalative onte. The sliehtest varintion in a raworable direction gave patural selection a startingepoint to work on. Through the continued action of natural selection on sach successive generation the weetul variation was gradually worked up; until at last it reached the magnitude of a specific distinction. Were it possible in such a case to have all the forms berore us, they would present the appcarance of a long series imperceptibly grading from one exterme to the other,

Upon this view are made two nssumptions not unnatural in the absence of ary exact knowledge of the nature of heredity and variation. - It was assumed, sis the lust place, thet wathation was or continuous progess, and, second, that any variation sould be transinitted to the offoring Both of tuese essumptions have since been shown to be unjustified. Even berore Mendel's work became known Bateson lid begut to call watention to the prevaleare of discontinuity in wariation, and a few yeers later this was emphasised by the Dutch botanist Hugo de Vries in his gleat wotk on The Madalior Thory The fermest of new ideas was zlready working in the solution, and under the stimulus of Mendels
work they heve rapidly crytalliser out. With the duwnt of befodity as a defisite sefence we have benn led to revise our widewa as to the nature of wariation, and condequently is some respetts as to the trend of evolution. Heritable variation has a defirite basiz in the gamete, and it it to the gamete, therrFare, not to tlise individmal, that we milust: bobla for the initiation of this proces. Somewhere or other in the course af their paduction ta anded of removed the factor upon whose remonal or addition the new variation owes its existence The new wariatipn eprimes treo being by a sudden step, not by a process of gradual and almost improceptible augmertation. It is not contenuous but diecont tineouls becauge it is based upon the presance of absence of some cefinite factor ar factors-ujwn discontinulty in the ganaetcs from which it sprang Once Formed, its enitimed existence is subject to the arbitrament of matural selection. If of walue. in the gtroggic for existerace matural gelection will decide that those who possess it stebll have a better chance of surwith and of leaving offepring than these who do not poosess it. If it is harmulut to the individual ratural scection will soon bring about its elimization. But if the new wasation is ncither hermeful aor useful there sems no reason mby it should tot percist

In the way we avoid a difterity shat beset the older wicw For on that wiew no nev cheracter could the developed except by the piling up ot minute variations throagh the action of ieturel selection. Consmquently any chardeter found in animals and plant must le supposed to be of
gome defnite use to the individual Otherwise it could nos inave developed through the action of netura！selection．Fut there ate plenty of characters to which it is escegtingly diticule to ascribe any utility，and the ingenulty of the supporters of thes wiew has often been severely taxed to account far their existence．On the more modern wicw this difficulty is avoided．The origirio at new variation as indepenciert oi hatural selcotion，and provided thet if is ant diedectly harmful there is no feason why it should not persist In this way wh are released from the burden of discowernes at utilitarian mocire behind all the multitudincus characters of 3hing ofganiams．For we now seogriac that the Function of natural selection es selection and not cleation．Tt has nothirg to da with the formation of the new variation．It merely decides whether it

One of the arguments made use of by supporters of the older wiew is that drawn from the study of aduptation．Auimals and plinte are as a rule re－ markably well adapted to living the life which tbeir surroundings impose upon them，and ix．some cases this adaptation is excnedingly striking Especially is this so in the many unctanger of what is called protective coloration，where the animal comes to resemble its surroundinge so closely that it may personably be supposed to chear cwen the keenest sighten encmy．Surely，whe ate told，such pertect adaptation could berdly have ariseri throwth the mere surrizal of chance sporth．Surely there must the some guiding hand moulding the sprecies into the reguired shape The argucment is an old ohe．For

John Ray that guidieg hand was the superior wisdam of the Exentor: for the modern Darminian it in Natural Serection controilitg the direction of yariation, Mendelism certainly ofters no sugestion of any with wontrolling force. It interpects the maratipns of living forms in terms of definite physiological factors, and the diversity of animal and plant: life is due to the galn or loss of these factors, to the arigination of new one or w bresh combiretions anmen those already in existencer Nor is there any walid reason against the strpposition that even the most remerkble cases of restmblance, such as that of the leaf insect, mety buve arisen through a prowes of mutation. Experience mith donestic phatits ind animals showg that the most bizare formin may artse as sports and jerpetuate themiseluec Were such forms, arising under natural ontacitions, to be favoured by matural selection owing to a resembeare to some" thing in their environment we should obtain a sirikemg case of protective adaptation. And here it must not be forgoten that those striking cases to which ouf attention ${ }_{5}$ gencrally called are but a very small minority of the existing lorme of life

Fer that epecial group of adaptation phenomena classed uncer the head of Mimicrys Mendelifin setas to afler an $\operatorname{joterpretation~simpler~than~that~at~present~}$ in wogue. This perhaps may be more clently expressed by taking a spetific tase. There je in Africt a genus of Danaine butterfles known as Amawris and there are feagons tor considering that the group to which it belongs jossesses properties which render at umpalasable to wertebrate encmies sucll as bims ou monkeys Tn the same region is aligo fown the
genus Enyaria belonging to the onticely difterent Eandily of the Nymphatidae, to which there js no evidence tor assigaing the distgreseble properties of the Danaines. Now the different specics of Ewadia show remarkably close resemblatodes the specios of Anampin, which ate fotidd flying in the same regon, and tt ls supposed that by "mimerkinge" the unpalatabte forms they impose upon their cremies and thareby acquire immutity fron attack. The joint at issace is the way in which this semingly purposeful recmblance hes been braught about.

One of the spocies of Euratia ouchers in two very distinct forms (F$]$. W 1, , which ware previously re satded as arparate spectes unoter the names E. waddergi and E MBMa. These tho forms respec-
 Fop purpasas of argument we with assume A. eoteria to the the more recent form of the two On the modern Darobinian view certain individuals of A. dominiondr gredukly diverged fom the rownionak type and eventually reached the rethria type, though why thas chotld have happened docs נot appear to becleer. At the same time thoge specimens which tended to mexy in the direction of A. arheria in places where this species was more abundant chan A.
 and muder its guiding lhard the form ontraterentually atone from wadbegri

According to Mendetian wiewe on the other hand, 4. soberd aroge entatenty from A. dominamens (or

MAIF Y

to the onore plentiful distesteful. form wrould give it the adwantage over whdicygi and inlow it to establish fteself in place of the latter On the modern Darwinian view natural sclection gradually shapos + Whatergito the matara form owing to the prosemer of A. echerrit on the Mendelian view jakutal gelection merely concerves the sima form when once it has arisen. Now this case of mimicy is one of especial interest, because we breve experimental evidence that the relation betweril wimis and
 present it is unterchn whith is the dominant and which the recessive foria. The two have baen proved to ocour in fanilies bred from the pame fernice without the occurrence of any [ntérnedialas, and the eate that the two 3 egregate cleanly is stront eridence in fanour of the Mendelian wew. On thes wiow the geiser Amanris and Eurade ontein a gimblar set of patere factors, and the corditions whatever they may be, which bring about matation in the former lear to the productipa of a simien matation in fro latter Or the difterent forms of Eserada produced in any foghon that one fers the best chance of euryival, through the operation of nathral selection, which tebembles the most pitatital Asmarit form. Mimetic resemblance is a true phemomenon, but rathral selection plays the part of a conservative, not of a lormative agent.

It is juteresting to rebell that in carlier yenfs Darwh was haclined to ascribe thone fmportance to "sports" as ppposed to continuaus minute wariation, and to onosider that they miplat play a rust incon siderabile part in the formation of new warietjes in
nature This view, however, lie gave hip later bc= cause lie thought that the telativalyr rate sport or matation would repidy disappent through the swamping eftecte of crossing with the more abuncant romal form, and so, even though fawoured by natural selection, would never stedeed in establishinge thacif. Mende]rs discoteng has elimituted this difincully. For suppose that the sport differed fronin the normal in the las of a fiotor and were recessive When mated with the normal this character would seem to disoppear, though, of course hall of the gemetes of its progeny would bort is By continsel crossinc with normals a small proportion of heterozygates would erentually be scattered among the populations, and as soon as ally two of these mated together the recessive sport would appor in one quarter of theit offirping.

A suggestive contribtition to this subject war recently made by G. H. Hardy. Considering the distribetion of a single factor in a mixed pepulation consisting of the heterozygous end the two homaxypus forms lie showed that such a population bueeding at random rapid[y fell into a stable con= dition with regard to the proportion of these theer forms, whatever may have been the proportion of the three forms to start with Let wis suppose, for instange, that the populatern ennsist ol p homayygotes of one kind, r hamorygate of the other Find, and z_{g} heterozygotes. Hardy pointed out that, other things being equal, such a popatation would be in equilibrium for this perticular factor so long as the condition $g^{2}=j^{*}$ was Eulfilled. It the condition is filflled to start with the population pemaing in

к䒑E VARIATION AND EVOLUTION
equifibrium. If the condition is tiot Eu]giled to gtart wirh, Hardy showed that a position of equilibrium beoomes established after a single generation, end that this posithon is thereather mantained. The propertions of the three classes whith satiefy the cquation $q^{2}=$ br are $^{\prime \prime}$ axcedingly numerous, and popatations in uhicim they existed in the proportions shown in the appended table would reinain in stable equilibstum generation after generation:-

This, of courge, sesumes that all three clases are equally [ertile, find tiat no form of selection ar taking place to the benefit of one class mone fhat of another Morcover, it makea no diflerence Whether in reptegente the homozygous dominats or whether it stards for the recessives A poptation onntaining a wery small propartion of daminents and onte containing ex gintithr propotion of recessictes are equally stable. The term lominant is in some respects apt to be misleading for a dominant chatacter cannot in wirtue of ita dominance cstablish itede at the expense of a recessipe one Brown cyes in man ere dombant to blue, but there is no feason to suppose that as yars go on the poptlation of thess islands will becorae increasingly brown cyed. Given equality of condithons both are on ant equal fonting. If, however, either dominant or Jecessive
be woured By selection the conditions ate altered, and it can be shown that even a small anvantase posessed by the one will rapidly foad to the elimhation al the ather Eten wilh but a 5 por cont selection adrantage in its favour th can be shown that a rate zport wall oust the normal form in a ferr hundred yerieatatons. Ita this way we are freed frorn a diffoctly triherent in the older wisu that varieties arose through a long ogntinued process involvinte the accumulation of wery slight variations. On that wies the establastinge of a new bype was of necessity a wery long and tedous business tivolving many thousands of generations For thes ferison the biologtas bas bsen aconstomed to demandi a verg Large supply of cime, often a groat deal more then the physjelist is Jisposed to grant and ehis has sometimes hed him to expostalate with the latere for guttiag of the supplys On the newer vicus however, this difficulty reed not arise, for we realise that the crigin and extablishing of a new form may be a vary quach more ragid process than has hitherto been dermed possible

One last question with regar'd to evolution. Haw far docs Mendelism: help 罳 in connection with the problem of the origin of specien " Ampog the plants find animals with which we have dealt we have boen able to show that ristind diferences, often consiferabre, in collour, size, and gitucture, may be interpoted in terms of Mendelian factors. It te not urakely that most of the various charicters which the systematist uses to mark of bon spectes from another, the somalled specifi= characters, are of this nature They serve as convenient labols, but are
not essential to the conception of species. A syrtematise who defint the wild gwatt pea could handly fail to include in this definition such cheracters as the procumbent habit, the Eerorils, the form or the pollen, the shape of the flower, and ite perpich colour Yet all these and other chatacters have bees proved to depend upor the presence of dedrite factors which can be cemoved by appropriate crassing. By this mosen we can protivoe a small plant a res inclies in height with an erect babit of erowths without tendrils, with round instent of oblong poilen, and with colourles feformed flowers grite different in apparance from those of the wild form. Such a plant would breede perfectly true, and a batanist ab whom it was prosented, if iznorat of ite origin, rijght ensily relegate it co a different genue. Nevertheless; though so widely divergent ith strueture, such a plant must ject be fcgatded as belonsing to the
 with the thariy different warieties of aweetropen it is not wisible attributes that constiotute the essential difterence between one species and another. The exgential differente, whatever it mayr be, is that maderlying the phenomenon of sterility. The wisible attributes are thoge made use of by the systersatist in etaloguing the different forms of animed and pland life, for he has no other choiee But it roust not be forgotten that they are often misleading. Witill they wert bred together Eawaida wadibergi and E. wind were rergarded es pafectly valid species, and there as little doubt that numbers of eecogntsed species wild evernually fatl to the gronnd in the same way as soon as we are in e position to apply the
test of breeding Mendelism has helper us to realise that specific efaraters may he but incidentel to a species-that the true miterion of what constitutes a species js sterifity, and that partieufar lorm of stecility which proventa two healthy gametes on uniting from producing a zygole with normal powers of growth and reproduction. For there are forme of sterility whith ate purely mechanical. The pollen
 because the pallen tubes ol the format are not long enough to penetrate down to the orrules of the latter. Hybride cinn nevertheless be obtained from the reciprocal cross Nos shoule we expect alifpuing Tom a St Bernard aud a toy terfer withont recoure to ardificial fertilination. Qr sterility may be dut to pathological eauses which nevent the gametes Erom mecting one another in a healthy state But in
 some other cause It is not inconocivable that debutu differences in chemical amposition render the protoplast of one species toxic to the gametes of the other, and if this is so it is not impossible that we may some day be able to express these differences in terms of Mendelan factors, "Tie wery" mature af the case mekes it one of extrente difictulty for experimental investigation. At any rate, we realiac more clearly then befipe that the problem of spacies in flot one that cant be resolved by the study of morptology or of systematics. It it a problen in physfolegr

CHAPTER XIV

ECOMOMTCLL

SLSCE berodity lies at the basis of the breeder's work, it is erident thiat any contribution to a more exact kriowledge of this gubject must prove of service to him, and there is no double that he will be able to prohit by Mendelian knowledge in the conduct of his operations. Indeed, ar we shall sec later, these jders bave alrady led to steflity restith in the rabing of new and more profitable warieties ln the first plane heredity is a questign of individuale. Identity of appearatice is no sure guide to reproductive quabities. Two individura similary bred and indistinguishable in butward form may nevertheiess bebare entively differencly when bred from. Takr, for instance, the farmy of swect peas shown on Pate lv. The F_{a} generation here consiste of geven distinct trpes, the ere sorts of purples thee sorts of reds, and whites. Let us suppose that our abject is to obtaju a true brecding straim of the paile purple picater fom. Nouk from the proportions in which they come we know thet the dilute colout is due to the absence of the factor which intensifics the coictur. Consequendy the
proptee cansot throw the two deeper shades of fed or purple, But it may be leterozygous for the purpling 『actor, when st wit] throw the ditute sed (Tinged white), or it magy be heterozygous for either of both of the two colons fators (cI. p. 4I), in whicha case it wid] throw whites of the picotecs which come in such a family, thercfore, some will give picotees, tinged whites, mind whites, others wi]s gere pieotese and tinged whites only, others wex giwe picotecs and whites only, while others, agein, and thege the least mummores, will give mothing but picotes. The new raridety is already fixed it a certann definite proportion of the plant ; in this purtuidur instance in I out of every 2\% A. A] that rechans to be dang is to pick out these plants, Since all the piroters look alike, whateres their
 the secd from a number of stuch platits. andinataby and to faige a further generetion. Some of them will be round to buced truc. The varicty ts then csabliched, atod may at onoe be put on the matlet with full confidence that it will hereafter throw nome of the ather forms. The allimportant thing is to save and sow the seed of separate individuals separately However alike they look, the seed from different individuals mugt on no account be mixedi Provided that due care is tatren in this respect no long and tedious process of selection is required for the tivation of anyr given varicturs Erery possible variety arising from a moos apgears in the $F_{\text {a }}$ generation if only a suffitient rutmber is raised, and of all these different varieties a certain proportion of enach is alrcady fixed. Heredity is a question of
indivicuals, and the recongnition of this will seve the bredier much labour, and caable him to fix bis waricties in the shotest possible time.

Such cases as these of the swate per throw a frosh light upori another of the breedere moneeptions that of purity of type Hitherto tife erterion of a "platensed" thing, whether platif or animal, has been its peofigrec, and the individual was tegroded ds more or less pure bred for a given quality according as it could show a longer or shoster list of ancestor posseasing this quality. Ta-day we realise that this is not essontial. The pare-bred ploted appears in ous Fo family bhough ita perent was a purple bicolor, and its serioter ancestors whites for generations. So also from the cross between pure strains of black and albino rabbits we may obtain in the F_{n} genctation mimals of the wild agout colour which breed as true to type os the pure wild rabbit of irrenmachable gediyred The true test of the pure breading thing lies not in its ancestry but in the nature of the ganetes which have grome to its making. Whenever two simitarly constituted ganetes wnite whateves the nature of the pexents from which they arose, the reguiting indiwidual is homovygous in alj respects and metst conseguently breed true In deciding gussions of purity it j_{s} to the gainete, and wat to encestry, thet our appeal must henceForth be made.

Improwement is after all the kefrote to the brecder's operations. He is aiming at the production of a strain which shall combine the greatest number oil desimble preperties with the least numbert of undesitable ones This good quality he must
take from one strajn，that from another and that agein，fromi a third，while at the same time avoidind all the foot qualitics that these ditierent stadins possers It is evident that the Mendelian concep－ tion of characters bated upon definite factore which are transmitted on a debinite scheme must prove of the greatest serfice to him．For onoe these factors have been determined their distribution is breught wender oontrol，and they chr be asociated together or dissociated st the breeder＇s will，The chind Jabour intoived is that necessy for the deternifia－ tion of the foctors upon which the warious characters depend．For it often lapperis that what appears to be a simple charactar tums out phen analysed bo depend upar the simultaneous presence of several detinet factors．Thus the Malay fowl breods truc to the walnut comb，as does also the Leghom to the single comb，and whon pure strains are crassed ald the offepring have whilut combs．At first sight it wrould be not unnatural to regard the diderence fas dependent upon the presence or absence of it single factor：Yet，鹃 we have alleady seen，two other types of comb，the ped and the rose，make their appearance it the F_{4} generation．Atla］ysis shows that the difference becween the walnut and the single Is a ditterence of two lactorg，s．ad it is not until this has beer detromined that we thin proced with certainty to trannfer the walnut character to a single－ combed beed．Moreover，in his process of analysis the breeder must be prepared to enoounter the warious phenomena that we heve descrited under the headings of intcraction of factors coupling，and repulsion，and the recognition of these phenomend
will naturally influence his procedure. Or, again, bis experiments may show ting that otic of the characters he wants, like the blue of the Andalusian fowl, iz dependent upon the heterozygous cature of the indiwidual which extribits it, and if such is the cas he will be wise to teboxt from any futile attornpt at fixing it. If it is eessental it anust be buile up again in cach gerieration, and he will recogribe that the most cocomomical way of doirig this is to crose the two pure stratns so that all the offiprithg may porsess the dessied shatheter. The Labotat of analysis is oftem an intritate and tadious business But once forie it is done once for alld. As spon as the various lactorg ate determined upon which the various cheracters of the individual depend, th soon an the material to be made use of has been properly analyand, the production and Exation of the requijed comtinations becomes a matter of cimple detail

An cxcellent example of the prateicel application of Mendeliar prineiples is attorded by the expertments which Frotessor Biffen has recently carried out in Cambridge. Taken as a thole Fnglish whoats compate favourably with forcigti ones it reppect of theit cropping power. On the other hand, they have two serious defects. "They are liable co suffer form the attacke of the fugros whon causes rust, and they do not bake futo a rood loat. This last property dependa upen the amount of [Juten prosent, and it is the greater proportibn of thig which giges to the "harid" foreign whent its quality of causine the loaf to cise well when babed. For some time it was held that "hard" wheat with
a high glutinous content conld not be groun in the English climate, and indoubtedly miost of the hard vistretios imported for trial deteribrated groatily in a very short time Prolessor Bifen managed to obtain a hatd wheat whith kept its gualities when grown in Englatid. But is spite of the superior quality of the grain tram the baker"s point of vient fis cropping capacity was too low for it to be grown profitably in conturtition with English whents Lille the latter, it was allso subpect to rust Amoner the many rarimties which Frolessor Giten cofected and grev for olservation he mbaged to find one which was completely immune to the attacks of the rust fing gus, though in other respects it had no desitable quality to ferommend it. Now as the result of an elaborate series of inmetifations, he was able to show tbat the qualities of heavy eropping chpecity, "hardncss" of grain, and immunity to rust chat be expressed th terms of Mexdelian factorg Having once antalysed this meterial the rast was comparatively simple, and is a tow yeate he has been able to build up a strain of wheat whith com bines the cropping espucity of the best Finglish warinties with the hardness of the fordgn kitid s_{r} and at the tame time is complegely immume to eust, This wheat has alroady been shown to keep its ghalities wrehanged for several years, and there is litte doubt that when it comes to be Erowa in guanity it will excrt en npereitible infucnce on wheat-growing in Grent Britaini

It neay be objected that it is oiten with amaty differences rather than with the larger and more strikity ones that the breeder is mannly concermed.

It does not matter much to him whether the colour of a pea fower is purple or pink or white But it does matter whether the plant bears rather larger sects thati ushal, of rather more of thems Even a small difference when multipited firy the sixe of the cog wial effect a corisiderable difterence in to perfit. It is the general cxperimene of seedsmen and others that differences of this mature are often capable of being developed up to a certain point by a process

TII. 38

of creful selection axh generation. At furst sight this appeats to be something very life the gradual ancumalation of mintere variations throngh the tointinuous applieation of a selective proces. Some rement experimenta by Professor Johansen ol Copenhasen set the matter in a difterent light Dne of his innegtigations deals with the inheritance of the weight of beans, but as an accouth of these experiments would fivolve tis len the ennsideration of a large amomot of detall we may take a strmple imaginary case to illustate the nature of the con-
elusiths at which he arrived. If we welgh in number of seded collected from a pateh of plants such as Johatitien" boans we should find that they varied considerably in site The majority would probafoly not diverge wery greatly from the gemeral awerage, and as we approthed the high or bow extreme we should figi a coujtantly decrosing number of individuals with these wetehls. Let ws suppose that the weieht of our sted varied hetwen 4 and 20 grains, that the greatest number of seeds were of the mern waight, vid 12 graian and that as we passed to either extreme at 4 and 20 the number became segularly less The weight relation of suth a collection of seeds ten be expreged by the accomparying curwe (Fig 3o) Now if we gelet for sowing only that seref which weighs over 12 grains, we shall find that in the ancext gencration the average weight of the sed is rijes and the curve becomes somewhat shifled to the right as in the dotted line of Fig' 3a, By continually telecting we can chift our curve of little more to the rifht, fien we sam incerase the average weight of the seeds matil at last we come to a limit beyond which further selection has no effect. This phenorrenon has becn lous kitown, and it wis customary to regird these variations as of at continucus nature, is as all chance tluctuations in a homogeneous mass, and the effece of selection was supposer 郎 aftord evidence thet small ootelinuous warjations conld be jncreasol by this process. But Johannsen's results point to another interpretation Instead of our material beiay homogenepus it is probably a mixture of sexeral strains each whth its
own average weight bbit which the varying conditions of the enwironment cause it to flutudte. Fach of these strains is termed a pure linen If we inagato thas there are thres such pure lines in our itrejintary case, with awerage weights $1 \omega_{1} 12,14$ grains respettively, and if the ratige of Fiuctuation of each of these pure lines is 12 grains, then our

Fin. 3 K

curve must be cepresented as madic up of the three camponemts

 grand may belong to any of these thee strainc it may be an avertige geed of B, or a rather large geed of A, or a rether small seed of C If it belange to B its oftopring will average 12 graing, if to A they will average 10 gramsis, and if to 6 they will average 14 graine Seedg of sumitar weight
may give a diferent result becaus they happen to be fluctuations of diflerent phare lines, But wichis the pure line any soct, darge or ghat], producs the average result for that line Thus a seed of line C which weighs 20 grains will grive practically the same rosult as one that wojrghs to grains.

Dri this wiew we can undereand why selection of the largery sed raises the awerage welyht in the next generation. We are pobing out more of C and less of A and B, and as this process is repeated the proportion of C gratually increases and we get the eppertate of selection acting on a continuowish warying hamogetuedes material and producing a permapent effect. This is because the intervall oweweat the average weight of the diflerent pure lines is striall corifater with the enpiopmental fluctuations: None the less it is there, and the sporet of separntrag and fiximg any of these, parte Jines is again to breed from the findividual separately. As soon as the pure line 施多eparater rurther seiection becomes superfurus.

Situce the pubitation of Darwin"s tamous work upou the effects of crogs- and gelf-ferthisation it has been genterly atoped that the efiect of a oross is commonly, though not adways, to introduce fresh whour into the offipring, thought why this should be 30 we are quite at a lose bo explatil. Contimacd close inloreeding, orl the contrary, evertually leads to deterioration, though, as in many actf-fertilised planta, a considcrable mumber of generations mey elapse before it showg itgelf isi aty marked degree The fine quality of many of the sodsman's choice rarieties of vegetables probably deppends upon the
fret that they have resultert from at eros but few generations back, and it is possible that they often oust the older kinds mot because thay started uns something intrinsically better, but because the Jatter had gratualiy deteriorated throung continecus selt Eertilisatioti, Most breedera are fully alive to the beneffial results of a cross so far ath wigour " cerned, but they ofter hesitate to embark upon it owine to what whs held to be the isevitebly lengtey and laborious business of recovering the arigina! variety and refixing it, even if in the process it was not altogether loge Thit danger Mentelisin lias removed, and we now know that by workisg on these lines it is possible in thece or four gencrations to reover the original varimy in a fixed state with al] the superadded vigour that followi form at eroiss.

Nor is the preblem one that concerns self-fertilised planter only. Plants that are reproducod ascmually often appear to cheteriorate after tow generations unless a sexual generation is introduced. New Yarieties of potato, for exarnple are froutently put upon the market, and theit excellerth gualitien give them a considerable voque. Much is expected of them, but time aiter time they Eeteridrate in a dise eppointing way and are lost to sight. lit is mot improbable that we are bete conderned with a case in which the plants lose their wigotar after a few asexual gemerations of reproduction from tubers, and can only recover it with the stimulus that results fom the interpolation of a sexula generation Thforturiately this generally means that the wariety is lost, for owinc so the haphearar way to which new kirds of potatocs ere reproduced it is probable that.
most cultivated varintics are complex hetarozpgotes Were the potato plant subjected to cargtul nnalysis and the varians factors deterained upou which its variatians depend, whe shorld be in a posithon to remake conaimuaily any good potnto without rupaing the risk of losing it altogether, as is now po often the case,

The application of Mendelian principles is likely to prove of more immediate sruvice for plants than animals, for owing to the liotes numbers probly ean be tapidy faiser from a single irldividtal and the preaterne of elforilisation, the process of analysis is greatly simplified. Even apart trom the chfoumstance thet the two sexes ritay sometimes differ in theit power of trantmitsion, the mere fact of theis separation remers the amalpsis of thcir propertien arore difficult And as the constitution of the indi= vidual is detcrmined by the dature and quality of its offapring, it is not ensy to ebtain this knownedge where the oftepring, as in most animals, are relatively fen, Still, as has been abundantly shown, the game primejples hold good bere also, and there is no masan why the process of analysis, thang more troutle some should not be effectirely carried out At the same time, it afords the breeder in rational basis for some familier but plewligy phemomena The fact, for instance, that certain chameters oftem "skip a generation" is simply the cffect of dominance in F_{3} and the reapptarance of the retestive character in the following generation, " Rewersion " and "atapisn, " arcin, are phequmena which are no longer inysterobis, but ean be simply exprossed in Mendelian terms as we hawe already suggested in Chap. VI, The
occastonal appearance of a sport in a supposedly pure strain is often due to the reappearance of a redesive chatacter. Thus ewen in the mosk highty pedigreed sitains of podled cattle such ats the Aber deen-Arugus, occabibnal incilividuale with horne eppras. The polled chatacter is dominant to the homed, and the occasional reappearance of the hormed Anitual is due to the fact that some of the polled herd are heteroygons in this chaveter. When wo such individuale are mated, the chances are I in 4 that the offepring will be horned. Though the heterogygous individuals may be indistinguishabie in appearance from the pure dominatit, they can be readily separated by the breediag test For when cogoset by the fecessive, in this case horned anjmals, the pure dominant gitw only polled beasts, while the heteroJygat individual gives equal numbers of palled and hoctied ones. In this pesticular instance it would probably be imprecticable to test all the cow by coossing with a borned bull For in each mase it would be nepestry to liave several polled calves from each before they could with peasonable ectainty be regardet as pure dominant Sut to enzure that no hormed calwes should come, 形 ja enough to wice a bull which is pure for that chatacter. This can ensily be tested by crossing him with a doxer or so hornel cows. If he gets no botned calves out of these he may bee regarded as a pure dominamtend thenceffoward put to his own cows, whother hormed or polled, with the certainty that all his calvan will be polled.

Or, again, suppose that a breder hers a chestriut mate and wishes to make certain of a bay foal from
ber. We know that bey is dominars to chestout, and that if a lomazygous baty stailion is Used an bay [oal muet result. In his choice of at sire, therefores the bredere must be gulded by the previous record of the animal, and select one that has newer given anything bue brys when put to either bay or chesttut mares: In this pay he will asstre himelf ot a bay foal from his chestutu mate, whereas if the record of the sire shows that be has giren chestutus lie will be hoterozyouls, and the chatnees of his getting a bay ore chestnut atit of a chesinut mate are equal

It is hot impossible that the breeder may be unarilinge to fest his amimels by crossing them with a fifferent breed thiroigh fer that theip puriby may be therchy impaired, and that the iulluence of the prenious cross may show jtself in succediog generbtions. He poight hanstate, for instance, to tees hes polled cows by erossing them with allorned bull for for of gecting homed chatwes when the cows were afterwards put to a polled bull of their ewor breed. The beljer jan the power of a sire to inturnee subsegurnt penerations, or aciegony as it is sonetimes called, is not uncornon even torday Revertheless caretully conducted experimente by more than one competent obserter have fanled to elicit a single shared of unequivecal evidence in 「avour of the wew. Until we have evidnace basad upon experinemte which. are capable of repetition we may staty ignore telegray as a fattor in heredity.

Heteroverous forms play a greater part in tine breeding of animels that of platis, for many of the quanjitien zought aftel by the breeder are of thing nature. Such is the blue of the Andalusian fowa,
and, according to Proteshor Wi]son, the roan of the Sharthon is similan, beine the hererogygus forio produced by mating red with white. The cheracters of certain breds of canaries and pigeons again appear to depend upon their heteroyggog inature. Such forms dannot, of course, ever be bred trae, tod whene several factors are concemed they may when bred tagether produce but a small proportipn. of oftering like themselves. As soon, however, as their constatution thas boen analyed and expressed in tericis of Mendeljan luctorsa pure straits can be built up which when crosged will rejve nathing but oflapring of the desired heteraygyous form.

The point with which the brecder if concerned we often fine opes, not wery ewident except to the prectised sye Herween an ordinary Dutch rabogt and a winner, or between the comb of a Hamburgh that is fit to show and one that if not the diterences are not wery apparent to the uminianted. Whether Mendelisur will assist the breeder in the production of these finer points is at present doubtiul. It taty be that these small diflerences are foritable, such as those that form the betis of Jobannsen's pure lines. Int this tase the breeder"g outlook as hoperilu. But it may be that the wriations which he seeks to per= petuate are of the nature of fluettuations dependent Uport the earlier fife eonditions of the indiwidual, and not upor the constitution of the gametes by witich it was formed, It such is the cise, he will get no help from the scierce of heredity, for we know of no evidence which meght lead us to suppose that variationa of this soth bal exter beome fixed and heritidele.

CHAFTER XV

MAN

Thougar the interest attaching to beredity in man is more widespread than is other animealst it is far more difficult to obtairt evidence that is both complete end sccurate. The species is one in which the diffepentiating chafacters separating individual trom indiwidual are wery numerous, while the number of the ofspring is comparatively few, and the generations are far betwecn. For these reatong , even if it weer passible, direct experimental work with mar wanld be lijely to prove both tedious and expensive. There is, howewer, another method besides the difect one Erom which something cen be learned. This consists in collecting all the evidence possible, ars renging it in the form of pedigres, and comparing it with standard cases already worken out in zuimals and plants. In this way it has been pocsibie to demenstrate in man the existence of seweral characters showing simple Mendelian inheritance As frw bestars medical mest have hitherto been concemed practically with heredity, such recorofs as exist are, for the most past, recorda of deformity of of disease. So it happens that most of the pedigress at present imailable deal with tharecters whith are
usually clased as afbormal. In some of these the inheritane is cherty Mendelian. One of the cases which hes boen most tilily worked out is that of at

Fict giv
 Irom lirimporar
deformity known as brachydactylys In brachydactylous. people the whole of the body is much stinted, and the figgers and toes appear to have Lwo jaints only instcad of three (ce. Fress 37 end \ddagger ? The inheritance of thite peculiarity has been carefuly
investigated by Dra Drinkwater, who eallected ath the data be was able to find among the mewbers of a large fataily in whels it opcured. The result is the podigree shown ari P I 59n It is ars5umed thac all who ate recorded as having offspring were morried to normals. Examimetion of the pedigree brings out the Encts (1 y that all a fiected indietduals have ati affected parmer ; 2) that none of the undereced in-

[达 27

dividuals, though sprary from the afected, ever have descendants who afere affected; and (3) that in frmilies whare both affected and unaffected accur, the murnbers of the two classes are on the average, equal. (The sum of such familtes in the complete pedigere ts thirty-nine affected and thitry-six mormals, It is obvious that these ate the conditions which ate fulfiled his simple Mendelian case, atod there is nothing in this pediegne to contradict the assertion that brachydactyly, whatever it mag be due to,
behaves as a simple dominant to the normbl formir is theat it deperds upon as factor which the normal clos not contejin The recessive narmals camot trensout the atlested condicion whatwer theis ancestry. Once free they arealways free, and an matry other ticretale with full confidence that nome al their childrem will show the detormity.

The evidetice available from pedt grees has rewealed the simplest form of Medelind it= heritance in several human defects and diseases among which may be methtioned presetile cataract of the erres, an abnormal form of skin thickening in the palms of the

hands and soles of the fatet, known as tylosis, and epidermosysis bullosa, a disease in wath the sikin rises up into mumerous bur'ting blisters.

Among the most intercsting of all human pedifrecs ig 0yin recentry bailt mp by Mr. Netucship from the recods of at hight-blind family linting near Montpellier in the south of Franoe. In bightblind people the retina is insensitive to lielut which talls below a certain intensity, and sucli pecple are consequently biad in tailite draylight or th moonlight - As the Montpellier cise had excited interest for some timo the records ure wiusually complete. They commeno with a cortain Jean Norgatet, who was born in 1637 , and suffered from nightoblindmes and they end for the prasent "with childen who are to-day bet a feve yests of age Particulars are kriow of ower zoot af the descendants of Jear Nougaret. Through tan gererations and nearly threr centuries, the affection has behawed as a Mendelinti dominant, and there is no sign that longacontimued matriage with folk of mommal rision has produced any emelionation of the neght-blind state

Besides cases such as these where at simite Form of Mendelian inheribane is obviousily indicated, Ahere are others which are more dificult to nead, Of some it may be said that on the whole the pecoliarity behawe th though it were an outinary dominant; but that exceptions gectur jo which sficected children are borm to untefoted parente ic is not impossibie that the cendition may, liter colaut in the sweet-pea, depend upon the proschace or absence of more than ore bactor In norie of these ches, however, ate
the data sufficient for determining with certainty whether this is so mer nat.

A sroup of ciases of exceptiosal interect is thet in which the incidence of diacase is largely in mot absolutely, resticted to ante gex, alt go far 25 hitherto knowh the butden is invariably botive by the male. Is bhe intoritance of colour-blindness
 whicla the defect is rate, thouth not umbopura, in the femate. Sex-limited inheritarice of a similar nature

FuE. 35.
[-d

ig known for one br por ocular defects, and for severat disease of the merwous systen. In the prouliarly male discase krowth hemophilia the bhoud refuses to clot when shod, and there is nothing to prevent great loss from even an supericial eratich. In its :gencral trend the inheritatue of hemophilia js not unlike that of horms among sheep, and it is possible that we ace luere again deating with a character whith is Gominant in one sex and recesgive in the other. But the evidence so far collected points to it differ ence somewhere, for in bemophtlic families the aftected males, instead of being equal in pumber to
the unatected, show a eoneldersble prejonderance, The unforturnate nature of the defect, however fores us to rely for oces interpretation almost entirely upen the fimilies produced by the unateoted bemales who can trathanit ith Our knowledge of the oftening of "bledding" males is as yet tar too scantyp aud until it is improwd, or until we cas find some prablicl tase in animals or plantan the precise stheme of intheritance for hamophilig musl remain undecided.

Though by far the greater pate of the human evidence relates to abrorthat br diecased bonditions a stapt has been made in obtaining pedigres of nomal characters, from the ease with which it can be obserped, it was natural that eys-calour should be earbr selected as in subject of investigetion, and the wirt of Hurst and athers has clearly demonserated the existence of one Mendelian factor in operation here. Espes afe of matiy coiours, and the colour depends upon the pigment in tive iris Some eres liave pigment on both sides of the iris-on the side that Eaces the ectina as well as on the side that Jooks out upon the world, Qther eros have pirment or the rotinal side only. To this class belorig the blues and clear greves white the eycs with pigment in front of the ifis also are brownt, hazet, or green in wrious shades aboocling to the amount of pigment prescman. In albino onjonela the pigment is entirely aboent, and as the little blood-wegsels are not obsented the ites takes on ite characieristic pitajish-red appeatance The condition in which pisment is present in front of the fris is dommamt to that in which it is abocme Greens, browns, or hazels mated
torycther may, it heteroxygons, give the recessive blue, but mo individuals of the brown eling are to he looked for among the offering of blues mated bogether. The blues, howner, mey carry factors which are depable of modidying the brorme fust as the pale pink-tinged swet pea (Pl. IV, g) when mated writh a suitable white gives only deep pilples so an eye with very dittle brown pigment mates with certain blews produces progeny of a deep brown, fat darker thar either parent, The blue mety clecy al lactor which brings about intensir fontion of the brown pigmejut There ste doabtless other tacters which modify the brown when prescrt. but we do not yet thow elvough of the znheritance of the warimus sluades to justify riny statement other than that the heredity of the pigement in front of the itis behtres as though it were due to a Menderitan Eactor:

Even this fatt is of cotsiderabie inportance, for it at once suggests that the present systemas of clusgi. fiention of eve-colours, to which wome anthropologitsts attech considerable wright, fite founded ou a purcly cmpitical and unsatisfactory basis. Intensity of colouF is the criterion at present in vogue, and it je custombry to arrange the cye-colours in a suale of increasing depth of shate, statting with pile greys and ending with the deepest browns. On thig system the lofhter freens are placed among the bites Bat wow howow hat Litues may pifict from the deep browns in the absence of only a single factor, while, on the other hard, whe difterence betwetn a blue and a green may be a difference dependent upan more thath ohe factor, To what
estent eyecolour may be valubile at a criternon of racc it is at present impassible to say', but if it ja cwer to betome so, it will only be after a searching Merdelian analysis has disclosed the factors upon which the numerore warjeties depernd.

A fistuscion of eyc-colour suggests rebections of suother kind. It je didenjt to beticure thet the markedy fiffersnt states of pigmentation which dereve in the same species are mot asociated with deep-seated chemben dificrences in月uencinte the character and bent of the individwal. May not these diflerences in pigmentation be couplod with and so beome in some measure a guide to mental ant temperamentat charicteristics? [s the Nationa] Portrait Gallery in London the pictures af celew bratad man and womes are [argely grouped acorating to the wocations in which they have succeeded. The observan will probahly have noticed that there is a temderoy bo in given type of wy-colour to predominate in some of the lurger groups It is rate to find anething but e blue among the seldiers and saniors, white ameng the actors, preachers, and urators che dark eye is predominant, ailthough for the population as a whele it is for soticer than the light. The facts are suggestive, and it is not impussible that future rescarch may reveal an futimate confection betwem precuinutiter of pigmentation and peraliarities of mind.

The inheritance of mental cheracterg is often eturive, for it is frequently diffioult to appraige tine effects of auly cnwironment in determining mata's bent. That ability cata be transiritted there is no doubtr for this is borne out by general experience.
as well as by the mumerous cater of ablie fituilies braught together by Gelton and others, Fur when we come to inquite more poctigely what it is shat ys transmatted we aer baffed. A distingutghed got Gollows in the footstepp of an distirymished fathot.] en this due to the inheritance of a particular mentel aptitude, or js it an instance of gencral mentall abiljty displeyred in a field rendered athractive by carly ascociation? Wc have at preserthery little definite eridence $\sqrt{0}$ supposing that what appent to be ppesial forms of ability may be due to specifo tutors. Hurst, tudecd, bas broughe forward same facts whel suggest that matibal setue sometimes behawe ata a roteseive oharacter, end it 动 Jikely that the study of some clean-cut facalty such at the matherantical one woud yield interestiog resulte.

The antalysis of mettat characters will no doubt ber very dificult, and poseibly the beat line of attack is to sererch for cases where they aue foscotated with some plyaical fature such as pigmentation. If an association of this kind be found, and the pigmentrition factors be determined, it is cwident that we should thereby obtain alu insight into the nature of the units upan which mental couditions danemd, Nor must it be forgotten that mentel qualicies, such is quickness, gemerosity, instability, eto, qualitie whith we are accustomod to regard as combenient units in elassifying the difterent minds with which we are daily brouglit into eontact-are not necessatily qualitios that correspond to heritable units. Effoctive mental abinty is langely a mater of temperament, aud this in turu is quite passibipr dependent upon the various secretions produced by the diferent
tisnes of the body. Cimelar fiswous sytems associated with different lireers erdybt conceivably result in indiwduals upon whoge mental ability the world woutd past a very diferent judgment Indeed, it is not at all [amposible that a particular form of meutal abitity may depend. Eor its manitestation, not go much upon an essential difforente in the structure of the werwous system, as upen the production by another tissue of some specife poison which causes the nerrous systen to pact in a detnite why Whe have mentioned these possibilitics merely to indicato how complex tre problem may turn aut to be Though there is jo doubt that mental abibity is joblerited, what it is that is transmitted, whether factors involving the quality and structure of the nempus system itgelf, or factors ingotwing the production of specife potsons by other tissues or both together, ts at present uncertain.
 that little is of extraordinary giginificance The qualities of wem and women, physicel and mentan, depend primatily thpot the inherent properties of the gametes which went to their mathog Within limita these quatities are elastic, and can be mosilifed to a grater at lesser extent by influcnere brought bo bear بpon the gropind syete, provided alvays that the
 can work, If the mathematiocl sacuity has been carcied in by the gamete, the education of the wygote wet enable han to make the most of it But if the basie is not there, no fonourt of educntion can trans= [orm that gyrgote into a rrathematietinn llije is a mather of comonot experience Neither ts there any
reason far suppasing that the supariou education of a mathemstical sygate will thereby ingrease the mashethatieal propensitios of the gatuetes which live within hira. Fro the gamete rethe litule of quaternigng Io is troe that there js progress af a kind in the world, and that this progross is largely due to impovemente in eduation and hygiene. The perple af to-day are better fitted to oppe with their matcrial surfounding than were the people of aucn a fow thousand yede aso And as time groes an they fre bble more and mare to control the workiners of the wartd around them, But there is no reason for eupposing that this is bucauge the dfects of education and jinherted. Man btores knowledge as bee stores honey or a squirrel stores nuts. With man, howerer; the hoard be nit a more lasting nature Eacth generation in using is sites, adors, and rejects, and paster it on to the mext a Cittle better and a litde fulfer Wber we speak of progrees we generally mean that the hoatd has ben improwed, and is of more sevwe to man ita his attempte to control his gerroundinge Sometmos this lioarded kubwledge je spoken of as the inlocritance which a gencration roceives from those who have gone before Thas is mishading. The handias ou of such knowdelge has mothing more to do with herdity in the biological bsine than has the handing on from parent to offspring of a picture, or a title, of on paie of boots. All these things are but the tand of something extrinsic to the specita. Heredity, on the ofher batad, deals with the trancmission of something intrimic forn ganete to apgote and from sygote to gamete, It is the participation of the
gathen in the prowes that is, our criterion of what is and what is not heredty.

Boter hygiens and better education, then, are good for the xygote because they help him to make the Fakest use of his inherent unalites. But the qualities themserves remail unchanged int so far as the gateres is onnerned, shate the gnmete pays ne heed to the intelleethal develapment of the zygote in thom he happers to dwell. Nerertheless, upon the panete depend those fuherent fecultics which erable the aygete to profit by his opporbunites, and, nuless the wgote has received them from the gamete, the adventrage of mducation ate of litte worth. If we are bent upol producing a permament betterment that shall be independent of externel cincumstances, If we wish the national stock to beome initerently more wigorous in mind and bodr, more free from congenital phytial defect and poble mentality betder
 ladge which have been nocumulabed through the conturies, then it is the gamate that wa must comsult The saving grace is with the gamete, and with the gemete alone.

Penge generally look mpon the humben species as having two kinds of indivituls, males and Femates, and it is for them that the sociologista and legislators, fame their schemes. This, bowtwer, is but ain imperfent wien to take of ourselves. To reality we are at tour kinds, male ygotes and female sygotes, lange gameter and shall parinetes, and heredily is the linls that binds us together. If atr lives prere like those of the starith or the sea-uechin, we should probably bave fenlisel this sonet. For the gameter of thene
animals tive frecky, and contract their matriages in the waters of the sen With us it is cliferent, botage half of us thust live within the other half of prorish larasites upon the rest, levying a daily toll of natrimant ufon their hosts, they rere yet in sume measure the atbiters of the diestitry of those within whom ther duell At the moment of umian of two gametes is donden the charater or another sygote, as mell as the nature of the population of ganter which must make its home within lions. The unian onte effected the inevitabile seguture takes its confrger find whether it be grot, or whether to be evill, we, the zygotes, have no longcr powcr to alrer it We are in the hands of the gamete; yet not entirely. For though we catinot in luence their behavipur we can nevertheless sontrol thetr unions मif we chooge to do sa. Ey regulating their martinges by encouragita the desirable to come together, and by keeping the undesirable spart we could po far towards ridding the world of the squalor and the misery that come though discase and weakness and vice But bevore we call be prepared to art, cxcept, perhaps, in the simplest ases, we must learn far more about them. At present we are woefully ignorant of much, thongh wo do know thet fuli knowledge is lareely in mater of time and meancs Onte day we shall have $i t_{\mathrm{p}}$ and the day may be mearer than most suspect Whether we make use of 胜 will depend in great measure upon whether wo ate prepmed to recogetise facts, and to modily or exen destroy some of the conventions which we have bocome accustomed to regard as the founcations of cul social life. Whatever be the outcome, there casi be little doubt that the future of

APPENDIX

As some readers may possibly cate to repeat Mentelis experinments for themselves, a few words on the methota wed in crossing may not be superBugus. The dower of the pee with ita standard, wings, and modian keel is too famitiar to noed descrjption. Lithe mast flower it is hermaplirodite. forth male and remale orgats occur on the same fower, and are covered by the keel. The antitista, ten in rumber, arce suanged in atiche round the pistil. As soon as they are ripe they burst and shod tain pollen on the style. The prilen abog then penetrate the stigma, pass dawn the style and geventualsy reath the ownas in the lower part of the pistil. Fertilisation occurs fere. Each ovulc, which is reached by a proben tubc, swells up and becomen at geod. At the same time the fugh carpels enclosing the ofules enfarge to form the pod. When this, the nosmal mode of fertilisation, takes plece, the flower Li said to be selfed.

In prosing, it is jecegrary to enasculate a bower on the plant chesen to be the famale parent For this purpoge a jrong flower must be taken in which the anthers have not yet buter The

Feer is depressed, and the stamerls bearing the anthers are fomaved at their base by a pair of ham forceps. It with probably be found necosary to tear the kece sligbtly in order bo do this The pistil is then coverod ap again with the keen and the fowior [s enclosed in a log of waved papar until the followung dev. The stigma is then agein expmand nud dusted with ripe pollen trom a Bower of the platt selected as the male garent. This dome, the litel is replaced, and she llowe fagain enclosed in its bag to proted it form the pasible attentions of insects urut It has set seted. the hag may bo ternoved in about a Week after fertilisation. it is perthaps hardly neecseary to wal that strict biolegical cheanliness must be exercised dusing the fertilising operations. This is readiby attained by sterilising fingers and Forceps with a little strong spirit belore each eperation, thereby ensuring the deeth of any toreign pollen grains whith may he prosent

The above method applies alfo to surect peas, with these slight modifications As the anthers ripen felatively sooncr in thes species, emastulation must be pertormed at a father cerlier stage. It is generalsy sare to choose a buc about thece parts grown. The interval betweri emasculation and fertilisation must be rather longer. Two to thee days js grenceally sufficient Further, the swect pea is risited by the leat-matier beg, Magrobia, which, unlive the poney been if able to cepress the keel and gather pollen. If the presence of this insent is suspected, it is destrable to guard against the pisk of admixture of foreign pollen by selecting tor pollinatian purposes a Fower which his not quite opened. If the
standard fs not erected, it 13 unlkely to have been visited by Merackit Lastly it mot infrequently hirpens that the little beetle Mrageina is found inside the keel. Such flowers should be vejected for crossing purposes.

INDEX

A Mocle micua +5
Albimp wign 45

 －
HiEn，R． H_{1} ， 1 a
B4（4）A
Emallyrlacyly， 55,7

Bah rwear pacis 57

Gulour－blinenass xob

 $\$ 5$
Cuncit 40，110

Herpan nouth，y［

Fega 1

톨눈 保 frlímulas， 5

Factare intoriucion 미 39

Figitg si hetreley
Fuctiations， 120 而

Hsmaptilln Id

Heierargaté，ol iذLéticicisit Joxilly
Ftrmaires，24，293
IFigulata ritinure IS
Homesty primulas，

Fublled bwet prac，Bx

176
Jolimitriew w， $1+7$

 $+5$
sLinlicry

NHiturily

Nigti－bimancss， 15

Phin soib

［＇igcons，

Firu＊，」戸

Hilen
Pallen al smot peit，ir

Fopularion lubsizance ul char－

Prexnce mil stealse Lisory，jE
［ure liste Jug
Prify of gheren，玉l
Puriver 1xpm，$=3$

3＝1，1

9： \boldsymbol{y}^{2} 4 4
9： 510
Rigy，Johz I 1］
Fowminu charncias $\left[\begin{array}{c} \\ \hline\end{array}\right.$

Remerslan 54， 5.5
in mbenile 棓

In lonly， 59

『－

鸟＝scima $5=$

Sinfle mbin

5merility， 40

givila，docke 13

Suter pel celcur in， $4 \mathrm{c}_{\mathrm{r}} 7$ 而 bievory of pro
inherliarate of tow imis．
Inberitaree ci sice jnt 57
Telesany，e54

Tsebermake $\mathrm{E}_{1,2} \mathbf{E}$

＂hromul comb 3 －9

अallow mice， 5 cr
Zrager，uncare gin 5

[^0]: 6 Cl mate pe p．1p．

[^1]: Angors which taraed out to be a maried. Duth

[^2]: tail and the charnetaromio sfor on the head.

[^3]:
 Lís colour.

[^4]:

[^5]:

